VVVVVVV

applies to CyPro v3.2.4 and later

cybreTech

© 1998-2024 Cybrotech Ltd.

Cybrotech Ltd.

68 St Margarets Road, Edgware
Middlesex HA8 QUU

London, UK
info@cybrotech.com
www.cybrotech.com

info@cybrotech.com
www.cybrotech.com

Index e Installation

Index
0T 1= PSSP 3
INEFOAUCTION ...ttt ettt e e e e e e bbb et e e e e e e aanbe b e e e e e e e e e anas 4
LTS3 =1 1= 4o) o SRR 4
0T T 01 (=3 = Lot PSRRI 5
L@ 01T a TS o 4o 71 (o) RSO 9
IAENtify MOAUIES ...t e e e e e e e e e e e e e e e 10
YT ET=T o o PSSR 11
(o Te =10 0] 411 T 12
i P2 10 AT TSSO 12
VATIADIES ...ttt e 14
REfTESN PrOCESSING ...ttt 19
(B Te (U =T I (SRR 20
L@ oT=T =1 (o] g o= o =Y PSPPSR 24
LT o= PSSO PRR 24
110 18] o3 1T o 1SR 24
Panel DULIONS ...ttt e e e e e e e e e e e 25
Va1 g F= TS SRS 26
Program iNTEITACE.........c..uueeeiie et 29
S T=Tu =TI 1 (= =TSP 31
FRATUIES ...ttt e e e et e e e e e et e e e e e e e 31
Free-programmable MOTEc..eiiiiiiii e 32
Free-programmable radio ..o 36
Free-programmable TCOP/IP..........oi et 37
Free-programmable SIMS ...t 39
INEEWOTKING. ..ttt e e oot et e e et e et e e e e e e e e e e e e e e e nae 40
Ethernet SetUp ... 40
(070] a1 g1 Tex (1o gl o] o] 110] o1 SRR 41
SOCKET INTEITACEeeiiieii e e e e e 43
FOatUIES .. 46
REAI-IIME ClOCK. ... e e e e e e 46
NAD @li@S ..o 47
Password proteCtion.............oooo i 47
MOADUS SIAVE ... 48
Mobile appliCation............cooiiiiii 49
Command lINE OPLIONSoiiiiiii i e 55
LC TS] o] €= (Yo [PPSR 57
Y o] o1=T g Lo [PSP PP PP PPRPP PPN 59
Data type SUMIMAIYottt e e e e e et e e e e e e eeeeaeaaeeaanns 59
Structured teXT SUMMAIYoviiii ettt e st e e abaeeeean 60
Program eXamPlES e e e e e e e e e e e e 63
FUNCHION TIDFAIY ...t e e 64
INSErUCtion liSt SUMMAIYcoiiiii e e e e e e 65
MODIIE @PP TGS -ttt 67
MOoDbIle QPP ICONS ..o 68
Operator panel ChAractersoooiiiuiiiiiii e 69
Keyboard SNOMCULSeeeiiiiieee e e e e e e 70

Introduction e Installation

Introduction

Installation

CyPro is integrated development environment for Cybro controllers, with text editor, compiler and
on-line monitor. It's running on Windows 7/8/10/11 or Linux/Wine.

Each controller has unique 5-digit serial number, also used as communication address (NAD).

Compiler implements structured text (ST) and instruction list (IL) from IEC 61131-3 standard for
programming logical controllers. Other languages are not supported.

IEC 61131-3
instruction structured ladder function sequential
list text diagram block diagram function chart

Hardware requirements are modest, any PC capable of running MS Windows should be sufficient.
Installation uses cca. 40Mb, default directory is C:\Program Files (x86)\Cybrotech\CyPro-3.

{5 CyProv3.0.5 for Cybro-3 Setup

Select Destination Location r\\
Where should CyPro be installed? [//

Setup will install CyPro into the following folder,

To continue, dick Next. If you would like to select a different folder, dick Browse.

|C:‘|Program Files (x86)\Cybrotech\CyPro-3 | | Browse...

At least 37.6 MB of free disk space is reguired.

[(mext> | | cancel

Installation does the following:

copy files into the specified directory
create start menu icons

create desktop icon (optional)

set association to .cyp file type (optional)

No file is copied to windows directory, no system files are replaced or changed. Default directory is:

e C:\Program Files (x86)\Cybrotech\CyPro-3 (program and binaries)
e C:\Program Files (x86)\Cybrotech\CyPro-3\Examples (plc programs and function library)
e C:\Program Files (x86)\Cybrotech\CyPro-3\Projects (user projects)

To upgrade CyPro, install a new release into the same directory. User settings will be preserved.
With new CyPro, it is required to also upgrade firmware (kernel). To do this, open Tools/Kernel
Maintenance and send the new kernel.

Introduction e User interface

User interface

Main window

CyPro consists of editor, toolbars and status bar. Default window is shown below:

“ File Edit View Project Program Teols Window Help

VeRewwd &

| = \
oc Environment | Configuratio ockets Send Monitor Stat Stop

>

Ln2 Col1

192.162.1.100 1234 Run ETH & JoIms R

Each component can be docked or floating. To undock, drag the component by the left vertical line
over the edit area. To dock it again, drag window to main window border.

Standard toolbar

[)'Mew. Create a new empty project

& Open Open an existing project (Ctrl-O)

H ssve Save current project (Ctrl-S)

& Pk, Print current project (Ctrl-P)

& S Remove the selection and place it on the clipboard (Ctrl-X)

Cap¥. Copy the selection onto the clipboard (Ctrl-C)

B Paste |nhsert the content of the clipboard at the cursor, replacing any selection (Ctrl-V)

Program toolbar

B8 Hardware. Ophen the Hardware Setup dialog box (F5)
B Alecation. e, the Allocation Editor dialog box (F6)
=M Masks | Open the Mask List editor (F7)

41 50dkets | Open the Socket List editor (F8)

Communication toolbar

Br Send Send current project to Cybro (F9)

By Menior. en the on-line Variable Monitor (F10)

b Start " Start program (F11)

B 3% Stop program and turn off all outputs (F12)

Introduction e User interface

Project tree
Displays project hierarchically.

E|-- Project: Untited
EI-- Frogram: Mew Program
=-E8 Hardware
4By CPU Unit: CyBro-3
-8 Shat 1; LC10H0Q
o LEE Slot 2 LCA04G
o M asks
-] Sockets
E;‘l Socket 1 [on_change, 0 vars)
‘ ST: function main:waid;
% Description

Right clicking any component opens it's context sensitive pop-up menu. Depending on type, it is
possible to Add, Edit, Delete or change Properties of the selected component.

Status bar

Status bar shows various information about communication and connected Cybro.

Modified ~ 192.168.1.4 8512 Stop ETH & 26ms DL R
project P A-bus PLC com port delay Tx/Rx
status address address status status indicators

System message (left side) show result of the preceding operation.

Project status indicate that current project is not saved. It reflects changes in any part of the project,
such as source, allocation, mask, socket, data manager or monitor list.

IP address shows IP address of connected controller.
A-bus address shows Cybro A-bus address (NAD). Right click to select another or enter a new one.
PLC status shows:

Off-line Cybro is not responding.

Run Cybro is on-line and running.

Stop Cybro is on-line, stopped. Outputs are inactive and program is not executing.

Pause Cybro is on-line, paused. Outputs remain active, but program is not executing.

Error Cybro is on-line, some error occurred. Error codes are listed in the appendix. To
clear the error press Stop.

Loader Cybro is on-line, but system software (kernel) seems to be damaged. Start Kernel

Maintenance and send a new kernel.
Com port status indicates whether communication cable is properly connected:

E OK

H cable not connected
[F communication port used by another application

Delay shows roundtrip time, from message sent to message received, in milliseconds.

Communication indicators show activity, green is transmit (Tx), red is receive (Rx).

Introduction e User interface

Pull-down menu

File
New Create a new project
Open Open an existing project
Load From PLC Load project from controller
Save Save current project
Save As Save current project under new name
Save alc File Save allocation file in text format

Save csv File

Printer Setup
Print

Close

Recent Projects
Exit

Edit

Undo
Redo
Cut
Copy
Paste
Delete
Select All

Find

Find Next

Find Previous
Replace

Go to Line Number

Indent Block

Unindent Block
Comment/Uncomment
Insert Identifier

Properties

View

Project Tree

Local Allocation Editor
Editor Tabs

Compiler Messages

Standard Toolbar
Program Toolbar
Communication Toolbar

Project

New Program

New Program From PLC
Remove Program
Properties

Save allocation file in csv format

Set printer options

Print current project

Close current project

Open recently opened project
Exit program

Cancel the last action

Cancel the last Undo operation

Delete the selection and put it on the clipboard
Copy the selection onto the clipboard

Insert text from the clipboard to the insertion point
Delete the selection

Select the whole document

Find specified text

Find next occurrence of the specified text
Find previous occurrence of the specified text
Find specified text and replace it

Move insertion point to specified line number

Move selected lines right by inserting leading spaces
Move selected lines left by deleting leading spaces
Insert or delete comment ("//") before selected lines
Display list of functions and global variables

Show properties of the selected project module

Show Project Tree

Show Local Allocation Editor
Show Editor Tabs

Show Compiler Messages

Show Standard Toolbar
Show Program Toolbar
Show Communication Toolbar

Create a new program in the current project

Load program from controller into the current project
Remove program from the current project

Show properties of the current project

Introduction e User interface

Program

Hardware Setup
Allocation Editor
Mask Editor
Socket Editor

Syntax Check
Send

Send Without Init
Start PLC

Stop PLC

Pause PLC

Add NAD

Remove Current NAD
Select NAD
Connect/Disconnect

Configuration

Tools

PLC Info
Kernel Maintenance

Online Monitor
Identify Modules
Init all variables
Multisend

Erase Protected Program

Communication Monitor

Environment Options

Open Hardware Setup dialog box
Open Allocation Editor dialog box
Open Mask List editor

Open Socket List editor

Check the current file for errors
Send current program to controller

Send program without initializing variables, when possible

Start Cybro program
Stop Cybro program and turn off all outputs
Pause Cybro program, keep outputs active

Add new network address to the current program
Remove current NAD from the current program
Select current network address for the active program
Connect/Disconnect communication port

Settings related to plc program

Display various controller-related information
Update system software

Online access to plc variables

Identify IEX modules and individual inputs/outputs
Initialize all variables, including retentive

Send program to multiple controllers

Erase password protected program

Low-level A-bus communication monitor

Settings related to CyPro environment

Edit window

Edit window is used to type and edit PLC program. Each function has its own window.

Hew Program - 5T: function main:void:

/% initialize =/ A

if first_scan then
cybro_io12_mode:=18; // i012 mode: pulse train output
cybro_qwi2:=18; // pulses per packet
pulse_train_frequency:=28; // output frequency [Hz]
end if;

f* send one packet per second =/

if fpi(clock_1s) then
cybro_qx12:=1;

end_if;

< >
Ln 26, Col1

Editor uses syntax highlight - variables, constants, functions and other language elements are
displayed in different colors. To customize colors, open Tools/Environment Options/Colors.

Insert identifier (Ctrl-Space) is used to display a list of allocated variables and available functions.

Online monitor

Online monitor is designed to display and change controller variables.

Online Monitor

Introduction e Online monitor

[+ X A-t +E 295 » n m|G ik Mnitod] -« o
History
I T O O A [B [1| |scan frequency int 9322 Dec
I n e nm WuE 1 |sean_time int 0 Dec
sCan_time_mas int 2| Dec
SCAN_OVEIn bit 0/ Dec
cybra_hardware_id it 101 Dec
cybro_hardware_ermar int 0 Dec
T | | | || evbro_power_supply int 241 Dec
| | | | cybro_temperature int 348 Dec
[11 I 1| | | |cvbro_msg_per_second int 19 Dec
IR RN | |can_lo_vaoltage_level int 2843 Dec
Il P N 11 1| |can_hi_voltage_level int 2846 Dec
e et |ean_rs_msg_per_second int 3|Dec
| | | can_ty_mzg_per_second int 10| Dec
can_rH_enor_counter int 0/ Dec
can_ts_ermor_counter int 0| Dec
Speed: A S0ms (165 total)

To insert new variables use Add button (Insert), select desired variables and press OK. To
rearrange variables, click Move Up / Move Down, or use Ctrl-Up / Ctrl-Down (arrow) keys.

Monitor update rate is 20ms (50 times per second). Scroll rate is 50ms, it can be changed with
Speed slider. First number is time to move a single pixel, second is total time from left to right.

To enter a new value, click Edit selected variables (Alt+Enter), right-click and select Properties, or

double-click the variable.

“arablez reset_counter [long]

Walue

Ul |Dec:

~|

0K

| | Cancel |

Enter value and press OK. Value is sent and immediately read back, monitor always display the
actual value. Multiple variables can be set at once.

To toggle a bit variable, press Space key.

Monitor supports multiple sets. To create a new set click Add new varset, then insert variables. For

a quick access press Alt-1 to Alt-5, or Ctrl-Left / Ctrl-Right (arrow) keys.

Introduction e Identify modules

Identify modules

Identify is a tool used to identify individual inputs/outputs.

Identify Modules (O] %]
> Reset
Slot | Mame | Description | MNAD | Piefix | GE | Inputs | Outputs |
@ CPU CyBra-? CyBro-2, 10 binary inputs, B binan outputs 5512 PP 2D D PO 22 -
B 1 aP-4 Operator panel LCD 2320, encoder, IR .. 153 owll @ SIIP P PP @
BE2 FC Farvcoil controller 1936 0 @ @ 202 @
BE 3 LCD Light controller [DS1/DALL 3733 did @ @D
BE 4 HR Hatel roam controller 1782 k00 @ 999 P09 P00 LD 2029
BEl S oz Two relay outputs with mains sense inputz 156 020 @ @@ - 1]
BEl 6 oz Twa relay outputs with mains sense inputs 152 o2l @ @@ -1]
BE 7
BE 8
BE 9
BE 10
EE 11
BEl 12 _'I

Each LED represents single digital input or output. When mouse is positioned over LED, signal
name is shown in the bottom left corner.

Input and output LEDs are defined according to the following table:

LED current level changed
[r] 0 no
) 1 no
] 0 yes
& 1 yes

General error (GE) is defined as:

LED description
-] module is operating properly
] error, module is not operative

To identify unknown input:
1. Resetall
2. Press and hold unknown input for a second
3. Look for the yellow LED

To identify unknown output:

1. Click LED to toggle the output

10

Multisend

Multisend is tool to update multiple controllers at once.

B Multisend) Tool

Introduction ¢ Multisend

Send kernel Send plc program [F I_nit all vars,
[vy i diferet [Without i including r=tentive
Mum Program MAD Status

1. Program 1 BER12 Sending kemel 3%
2 Frogram 1 E511
3 Frogram 1 ES10
4 Program 2 7316

Current: []

Total []
Check all programs

LCloze]

All programs and all NAD's are listed.

It is optional to send program either without initialization (only if allocation is not changed), with a
standard initialization (retentive variables are preserved), or with forced initialization (all variables

are initialized, including retentives).

Option Check all programs will verify all programs by reading back and comparing to original.

11

Programming e Hardware

Programming

Hardware

Expansion modules

Cybro is expanded with IEX-2 modules. For the complete list, check hardware manual.

slot 0 slot1 slot2 slot3 slot4 slot5 slot6 slot 47

Each IEX-2 module has unique address, equal to serial number. Autodetect will detect module type,
address, and assign slot number. Slot 0 is reserved for Cybro internal inputs and outputs.

Some modules implement autoaddress feature, used to fit devices into a predefined hardware list.
Hardware setup

To perform automatic detection of connected modules press Autodetect button.

 Hardware Setup

Bf Autodetect 18§ Clear All 18§ Clear Modules 18§ Clear Missing 3¢ Clear + llove Up L Move Down B Properties

Slot Mame Description MAD Prefis Status

& CPU Ukt Cybro-3H 3 binary inputs, 4 relay outputs, 4 universal input/outputs, RS485 port, EnDcean.. 10000 @ 0K A

BEl Slot1 Bio-20 10 relay outputz, 10 digital inputs 44275 hiol0 @ 0K

BEl Slot 2 Bio-20 10 relay outputs, 10 digital inputs 44276 bio @ 0K

BEl Slot 3 AR12 12-channel analog input PHIO0/1000, Mi10041000, R200/2000, 2 or 3-wire 33702 a0 @ 0K

BEl Slot 4 Aov-12 12-channel analog output 0,70 23467 aowD @ 0K

BEl Slot 5 op-2 Operator panel: LCD 2416, 5 keys 18865 opOO @ 0K

BEl SlotE

BE Slot 7

BEl Slot 2

BEl Slot9

BE Slot10

BEl Slot 11 W
| ak | | Cancel |

Dialog shows slot number, module type, short description, communication address, variable prefix
and status.

12

Device properties

Programming e Hardware

To open device properties, double click the module, or click right and select Properties.

CPU Unit

LCPU Unit:
MNAD [A-bus]:

Description:

cybro_iol2_mode:
cybro_iol3_mode:
cybro_iold_mode:

cybro_iol5_mode;

pulze_train_frequence El
pulse_train_ramp_tim EI

Cybro-3 ~

10000

12 binary inputs, 10 relay outputs, 4 universal

input/outputs, Endlcean gateway [optional]

analog input 0. 20mé, ~
analog input 0. 20md, w
temperature sensor ~
ot uzed ~

Alr 4]

clock_1min
clock_10z
clock_1z
clock_100ms
clock_10ms
retentive_fail
SCan_overrun
first_scan
cybro_iv15
cybro_ix14
cybro_ixl3
cybro_ix12
cybro_ix11
cybro_ix10
cybra_ix03
cybro_ix03
cybro_ix07
cybro_ix06
cybro_ix05
cybra_ix04
cybro_ix03
cybro_ix02
cybro_ix01
cybro_ix00

qx

push_meszage_ack
push_meszage_req

analog_filter
disconnect_inputs
tho_wirite_req
ee_write_req

ee read req
cybro_qul5
cybro_g«14
cybro_qul3
cybro_qul2

cybro_gx03
cybro_qu08
cybro_qu07
cybro_qu0E
cybro_qu05
cybro_gx04
cybro_qu03
cybro_qul2
cybro_qgx01
cybro_qu00

i

cybra_hardware_id
cybro_hardware ...
cybro_mag_per_s...
can_hi_voltage_|..
can_lo_voltage_|..
can_ks_emaor_cou...
Car_IW_efmor_cou...

can_ks_msg_per_..
Can_rs_msg_per_...
cybro_power_sup...

cybro_temperature
ee_wite_magic
zcan_frequency
scan_time_max
scan_time
cybra_iwl5
cybro_iwl4
cybro_ivl 3
cybra_iwl2

qu

rhe_year
e_month
re_date
re_weekday
the_hiour
rhe_rin
hc_sec

pulse_train_ramp_...
pulze_train_frequ...
cybro_iol5_mode
cybro_iold_mode
cybro_io13_mode
cybro_iol2_mode
cybro_qwlh
cybro_gqwld
cybro_qwl3
cybro_quwl2

Cancel

Dialog shows automatically assigned i/o variables for the module. Everything device does is
accessable through this variables.

Meodule in Slot 2

Module;

Description:

Default

LC-1040 i

MAD [IEX-2); |44285

HIQ controller for 10 lights, autoaddress 100

autoaddress_active
bus_error
progranm_erraor
timeout_ermar
general_ermar

=03
=08
=07
=06
05
i=04
=03
102
i=01
=00

output_made_req
input_mode_req

q=09
qu0
qull7
qu0E
g5
q=04
qul3
qull2
qx01
qu00

iex_card_id
firmwware_version
buz_emaor_counters
iex_power_supply

output_mode_09
autput_made_08
output_mode_07
output_mode_06
output_maode_05
output_mode_04
output_mode_03
output_mode_02
output_mode_01
autput_made_00

input_made_03
input_mode_(03
input_mode_(07
input_mode_ 06
input_mode_(05
input_made_04
input_mode_03
input_mode_02
input_mode_01
input_mode_00

qw

output_mode_data
output_made_indey

input_rmode_data
input_mode_index

lowa_light_signal

Cancel

Variables are sorted in four columns: I-inputs, Q-outputs; X-digital, W-analog (word).

13

Programming e Variables

Each module has a four status variables (general_error, timeout_error, program_error, bus_error),
shaded gray. When general_error is zero, everything is ok, module is fully functional.

Yellow shaded variables are sent on change. When changed, it is sent automatically.

Red shaded variables are sent on request. Each group of four has it's own request. To send the
group, set request to 1.

To get description of each variable, hover mouse over. The description comes from the cym file.

Variables

Naming

Variable name may contain letters, digits and underline symbol. First character must not be a digit.
Maximum length is 32 characters. Name is not case sensitive. Special and national characters (B3,
a, 0, é, ¢ ¢S, 2..) should not be used.

Examples of a valid name:

i

caret_position

maximum_water_level

Name must not match IEC-1131-3 keyword.

Allocation

Variables are allocated using Global Allocation Edit. To insert a new variable, choose group and
click New Variable.

Global Allocation Edit

Ef Mew Variable MY Rename 3¢ Delete % Cut Copy [& 4+ MoveUp 4 Move Down | E& Properties
Groups: ‘Wariables:
U.ser Wariables A Mame Type Aftributes Description
g Lights Req 0g d output [-1- put humber].
Dgemote Fequest ta blink specified output a few times [-1-idle, 0. 55-output ny
= GENS global_zcene_request int Global request to et a scene [-1-idle, 0..31-scene number).
= ?_\fac " global_scene_nao_inverse bit ‘“when processing global scene request, don't apply inverse scene. L
= metabie global_zcene_no_rezend bit “When processing global scene request, don't send back to network.
= Elessnie global_memony_request int Global request to memarize scene [-1-idle, 0..31-scene number). Only
= ol _t presence_indicator bit Indic:ate that tenants are at home [0-no, 1-pes). Calculated using all ¢
Di:ﬁomatlon lov_light_indicator bit Indic:ator that lightness level iz low, so automatic lights are allowed te
arm]
< > < >
| Add group | | Rename group| | Delete group] I | Cancel
Basic data types

type size range

bit 1 bit 0..1

int 16 bits -32768..32767

long 32 bits -2147483648..2147483647

: 38 38
real 32 bits -107..10

Bit is a single boolean variable with only two possible states, zero or one. It is used for flags, logical
equations, logical states and other. The result of comparison instruction is also bit type.

Int is a 16-bit signed number. It is used for counting, encoding states, fixed point arithmetic and
similar.

14

Programming e Variables

Long is a 32-bit signed value. It is used when numbers outside of 16-bit range may occur.
Processing speed is the same as for the 16-bit integers, but they use more memory.

Real is a floating point number. Float consist of 8-bit exponent and 24-bit mantissa, so the result
has 5 to 6 significant digits.

Other data types

In bit, out bit, in word and out word variables represent physically connected binary (bit) and analog
(integer) signals. In bit and out bit are bit type. In word and out word are integer type.

Timer is a structured data type, consisting of a several dedicated fields.

Constant is used to represent a value that will never be changed. For example, Pi=3.141592 can be
defined for trigonometrical calculations. Constants are replaced in preprocessing, data type does
not apply.

Retentive variables

Retentive variables retain their value when power supply goes down, and also when PLC is
stopped. To make variable retentive, set the retentive flag in the global allocation dialog.

VYariable Properties - working_hours [x|

T

r

Both retentive and non-retentive variables reside in the same RAM, but retentives are automatically
copied to battery backup RAM.

RAM

PLC program
-
D

Number of retentive variables is not limited. If needed, the whole PLC memory can be retentive.

Data retention time is specified in Cybro hardware manual. When power is lost for a period longer
than specified, content of retentive memory may be lost.

System bit retentive_fail indicates that retentive memory is damaged or lost. It is set automatically
after power-on, and cleared next time PLC is started.

When allocation is changed, sending program to PLC will clear all variables. If allocation is not
changed, retentives are preserved. To send program without initialization, use Send Without Init.

15

Programming e Variables

EE variables

Variables that must be preserved for a long period without electricity are stored in EEPROM. To
configure this, set "Copy to EE" checkbox.

Wariable Properties - working_hours [x|

P el

r

EE variables resides in RAM memory as all other retentive and non-retentive variables, but they
also have a copy in EEPROM. Because of this, they are used by PLC program the same way as all
other variables, but in addition, reading and writing to EE is available.

EEPROM RAM

ee_read_req
e

ee_write_req PLC program
ee_write_magic
«—

To read all variables from EE to RAM, set bit ee_read_req. Bit will be automatically cleared when
copy is finished. Depending on number of EE variables, copy process may last a few seconds.

To write all variables from RAM to EE, set ee_write_magic to 31415 and set ee_write_req. When
copy is finished, both variables will be cleared. Depending on number of EE variables, write process
may last a few seconds. The purpose of magic is to protect from accidental writing.

Only the whole EE can be read or written, there is no method to read or write a single variable.

EE variables should not be accessed by program during read or write. The operation is finished
when command variable (ee_read_req or ee_write_req) is returned to zero.

EE variables are automatically retrieved on power-up.

Total number of EE variables is limited by physical size of EE memory, specified by hardware
manual. To check memory usage, open PLC Info dialog box, tab PLC Program, Total EE size.

16

Programming e Variables

1/0 variables

I/O variables are used to access physical inputs and outputs. Cybro uses four I/O address spaces,
two binary and two analog. Binary inputs and outputs are allocated respectively, starting from the
ix0 as the first input and gx0 as the first output.

binary inputs binary outputs
o s e o
IX63 QX63
IX32 slot 1 QX32 slot 1
I|)§(301 on-board QQ)§(301 on-board

Analog i/o space has 32 analog inputs and 32 analog outputs for each slot. Slot O is reserved for
Cybro local inputs and outputs. In word and out word variables are both integer type (16 bit signed).

analog inputs analog outputs
Wi s W s
W63 QW63
W32 slot 1 QW32 slot 1
IY\\//V‘? reserved %‘%301 reserved

Input and output variables are auto-allocated, their name is in the form:
NnNNxx_varname

where nnn is prefix (e.g. bio for Bio-24), xx is card number (starting from zero) and varname is the
function it performs. For example, operator panel key F is allocated as op00_key f.

Timer
Special structured type, used to determine time interval. To define a new timer variable, open Insert

New Variable dialog box, choose timer type, enter name, adjust preset, type and timer base, then
press OK.

—Preset
day: howr: mir: sec: msec:
= =1 I=| = =
PP Zk S 3k 2
Type Base
% Pulse) Ims = 100ms
= Oredelay f* 10ms 1z

Timer base is a period in which the timer is incremented, time resolution of the timer.

17

Programming e Variables

Timer may be represented as the function block with two inputs and two outputs:

timer
—»/in aql—
pt e
oy

Correspondingly, the timer variable consists of four fields. Each field is an elementary data type.

name direction type description
in input bit input
q output bit output
pt input long preset time
et output long elapsed time

To use timer, the following syntax applies:
<timer name>.<field>
For example, to set the preset of the wash_timer to 15 seconds (assuming the base is 100ms):
wash_timer.pt:=150;
Elapsed time of the wash_timer will start at 0 and increment every 100ms until it reaches 150.
Pulse timer

Timer output is activated immediately after the rising edge of input signal. After the specified time,
the output will go off. Changes of input signal during active pulse do not affect output.

S e I e Y s I
| |

Typical application is a staircase timer.
On-delay timer

When input is activated, timer starts counting. After specified time output activates and stays high,
until input goes low. Available fields are the same as pulse timer.

N] I L

Typical application is a star-delta switch for three-phase motors.

18

Programming e Refresh processing
Visibility
Each variable can be marked as:
User visible across all tools
System visible in tools used by administrators (CybroOpcServer, CybroDataTool)

Hidden not visible outside of CyPro environment

Automatically allocated I/O variables are marked as "System".

Refresh processing

Cybro implements soft refresh processing. In a regular cycle, inputs are sampled immediately
before and outputs are refreshed immediately after the execution of PLC program.

When scan time is very short, inputs and outputs may not refresh in each scan.
When scan time is very long, inputs may update during the scan, to reduce lag.
IEX modules are updated strictly before and after the scan.

Scan overrun

Scan time is defined as a time needed to complete a full program cycle. It consists of system tasks

and PLC program.

system read PLC program write
tasks inputs oo outputs
|
scan time

When scan time exceeds 100ms, controller goes into scan overrun error and stops program
execution (current scan will be finished). Error code is displayed on the status bar. To disable this
feature, uncheck Scan overrun stops program in Configuration options dialog box.

When scan time exceeds 250ms, program will be interrupted by hardware watchdog, regardless of

overrun settings. When this happens 10 times in a row, program will be stopped with repetitive reset
error.

19

Programming e Refresh processing

Structured text

Structured text is a high level language similar to Pascal, specifically developed for industrial
applications.

Assignment
Assignment is used to store value in a variable. An assignment statement has the following format:
variable := expression;
The assigned value should be lower or equal data type than the variable.
Expressions
Expressions are used to calculate a value, derived from other variables and constants. Expression
may use one or more constants, variables, operators or functions. Using expressions, Cybro can
perform complex arithmetic operations, including nested parentheses and mixed data types.
Examples:
y_position:=5;
down_timer.pt:=15000;
case_counter:=case_counter+l;

start:=(oil_press and steam and pump) and not emergency_stop;
valid_value:=(value = @) or ((value > 10) and (value <= 60));

Operators

Cybro supports a number of arithmetic and logical operators, listed in the following table:

operator | alias | unary | binary | function | bit int long real result
+ ° ° . ° same
- same
* same
/ same
mod % . . . same
not ! same
and & same
or [. . . . same
xor same
shl, shr . . . same
rol, ror . . . same
= == bit
<> |= bit
<, <= bit
> >= bit
= same

Expression evaluation

Expressions are evaluated in a particular order depending on precedence of the operators and
other sub-expressions. Parenthesized expressions have the highest precedence. Top precedence
operators are evaluated first, followed by lower precedence. Operators of the same precedence are
evaluated left to right.

20

Programming e Refresh processing

Consider the following example:

Speedl := 30.0;
Speed2 := 40.0;
Press = 50.0;
Rate = Speedl1/10 + Speed2/10 - (Press+4)/9;

In this example, evaluation order is:

Rate = 30.0/10 + 40.0/10 - (50.0+4)/9
Rate = 3.0 + 4.0 - 54.0/9
Rate = 3.0 + 4.0 - 6.0

Rate = 1.0

Evaluation order can be changed using parentheses:

Speedl := 30.0;
Speed2 := 40.0;
Press = 50.0;
Rate = Speed1/10 + Speed2/(10 - (Press+4)/9);

In this example, evaluation order is:

Rate := 30.0/10 + 40.0/(10 - (50.0+4)/9)
Rate := 30.0/10 + 40.0/(10 - 54.0/9)

Rate := 3.0 + 40.0/(10 - 6.0)
Rate := 3.0 + 40.0/4.0
Rate := 3.0 + 10.0

Rate := 13.0
Type conversion
Lower-to-higher data type conversion is performed automatically:
bit — int —» long — real

In the following example, multiple of implicit conversions are performed:

real0 := (reall > real2) * intl + longl;
real real
bit - int
N7
in A long
real - long
real

If both arguments are integer, result is also integer, regardless of the operation.

i := 25;
= i/10; // result is r=2

=
|

To get the expected result, constant should be written as 10.0:

i, g5 233
:= i/10.0; // result is r=2.5

=
1

Same result can be obtained by using the cast operator:

i := 25;
real(i)/10; // result is r=2.5

-
n

21

Programming e Refresh processing

Multiline expressions

In a multiline expression, each line must end with an operator:

heater_on := (heater_temperature < 600) and
(((mode = MANUAL) and start_pressed) or
((mode = AUTO) and heater_request));

Flow control
This commands define order in which program statements are executed.
if..then..else

Conditionally execute one or another block of statements:

if <expression> then
<statements>;

elsif <expression> then
<statements>;

else
<statements>;

end_if;

Example:

if a>(2*b) then
dE=s

elsif a>b then
d:=2;

elsif a=b then
d:=1;

else
d:=0;

end_if;

case..of

Conditionally execute one of multiple statements. It consists of an selector and a list of statements,
each preceded by a constant. Selector type must be ordinal (boolean, integer or long).

case <expression> of
<value>: <statements>;
<value>: <statements>;
<value>: <statements>;
else
<statements>;
end_case;

Example:

case material_type of

1: speed:=5;

2: speed:=20;
fan:=0N;

3: speed:=40;
fan:=0N;
cooling:=0N;

else

speed:=0;

end_case;

22

Programming e Refresh processing

for..do

The for...do construction allows a set of statements to be repeated specified number of times.
Counting variable is incremented by 1 at the end of the loop.

for <var>:=<expression> to <expression> do
<statements>;
end_for;

The statements within the loop must not contain fp or fn instructions.
Example:
for i:=0 to 19 do
channel[i]:=TRUE;
end_for;

while..do

The while...do construction allows one or more statements to be repeatedly executed while
particular boolean expression is true. The expression is tested prior to executing the statements.
When if becomes false, statements are skipped and the execution continues after the loop.

while <expression> do
<statements>;
end_while;

The statements within the loop must not contain fp or fn instructions.
Example:
while value<(max_value-10) do
value:=value+position;
end_while;

Return value

Structured text function may return a single value of one of the basic types (bit, int, long, real).
Return value is defined by the following expression:

result := expression;

Variable result is automatically declared when function is configured to return a value (function
properties). Data type is the same as the type returned by function. Within a function, result may be
used more then once:

if a<=b then
result:=a;

else
result:=b;

end_if;

23

Operator panel e General

Operator panel

General

Operator panel is the optional external device connected to the Cybro via the IEX-2 bus. OP
provides LCD display and a few keys readable from the PLC program.

OP has to be defined in the Hardware Setup dialog box. Configuration is saved within project.

-iolx]
ﬁ Autodetect P Clear m Clear 8l + MoveUp 4 Move Down @ Properties

Slot | Mame | Description | MAD |A
R CPU Urit CyBro-2 CyBro-2, 10 binary inputs, 8 binary outputs 004000

B8 Slat 1 FC Fan-coil contraller 00000

z=i5lot 2 Operator panel: LCD 2416, 5 keys 000041

B8 Slat 3

B Slat 4 e

To program operator panel, the following tools are available:

Print functions Structured text functions typed in the PLC program. Used to display strings
and values.

Panel buttons Bit variables readable from PLC program, represent current button state.

Panel masks Visual tool for programming operator panel, used to enter parameters.

Capable of entering integer values, decimal values and values represented
by strings. Parameters may be hierarchically organized.

Print functions
Print functions are structured text functions used to display text messages and values.
First parameter is slot number where display appears in the hardware setup. Two following

parameters of all functions are x and y coordinates. They are used to set display position. Print
origin is in the upper left corner.

0,0 15,0
He|lllio, wolrilld!

0123/4/5/6|7/8/9/0/1/2/345
0,1 15,1

Printing outside visible range may produce unexpected results.
Print functions are:

dclr(slot:int);
Clear the whole display (fill with spaces).

dprnc(slot:int, x:int, y:int, c:char);

Print single ASCII character on specified coordinates. Character may be entered directly ('A’), as
ASCII constant (65), or as integer variable. Values from 0 to 255 are allowed.

dprns(slot:int, x:int, y:int, str:string);

Print a string of characters, enclosed in single quotes.
24

Operator panel e Panel buttons

dprnb(slot:int, x:int, y:int, c@:char, cl:char, value:bit);

Print first or second ASCII character, depending on bit value. If value is false, the first character is
printed, otherwise the second.

dprni(slot:int, x:int, y:int, w:int, zb:bit, value:int);
Print integer value to specified coordinates. Parameter w defines width. For example, if w is 4, print
range is -999 to 9999. Parameter zb is zero blanking. If zb is 1, leading zeroes are replaced with
spaces.

dprnl(slot:int, x:int, y:int, w:int, zb:bit, value:long);
Print long value to specified coordinates. Parameter w defines width. For example, if w is 6, print
range is -99999 to 999999. Parameter zb is zero blanking. If zb is 1, leading zeroes are replaced
with spaces.

dprnr(slot:int, x:int, y:int, w:int, dec:int, value:real);
Print real value to specified coordinates. Parameter w defines width, parameter dec defines number
of decimals. For example, if w is 6 and dec is 2, print range is -99.99 to 999.99. Zero blanking is

always on.

Each parameter (except string in dprns) may be constant, variable or expression.

Panel buttons

Operation panel buttons are accessible from PLC program as binary input variables:

0P_2 -

key up key e
key p key_dn key_f

Key P is used to invoke and exit mask, so it's not available for PLC program (reading is zero).
However, if no entry point is defined, it behaves the same as other keys. In such case, mask may
be invoked by writing mask number to op00_next_mask.

When mask is active, up, dn and e are not available (readout is zero). Key F is always available.
Key variable is true as long as the key is pressed. When key is released, it becomes false.

Any two (or more) keys may be pressed simultaneously. This may be used to initiate a special
function. In the following example, pressing up and down simultaneously resets product _count.

if fp(op@o_key up and op@@_key dn) then
product_count:=0;
end_if;

Variables are allocated automatically when OP is defined in Hardware Setup.

25

Panel masks

Operator panel e Panel masks

Mask is visual tool for creating user inputs on operator terminal. Masks are transferred to the Cybro

together with PLC code.

User creates a new mask or edits the existing one by using Mask Editor. Created masks are listed
in the Mask List. Masks are integral part of the PLC project, they are saved on the disc and

transferred to the controller.

Mask Editor

i
o =

Mask List

PLC project

| L e
pown [oF o

= e
O e - i

= 3 L e
e

—— ::@FgFg
i = |

CyBro-2

When user presses P, Cybro sends first mask to the OP. Pressing E advances to the next mask.

Entry point ! P

maskO01

Next mask JL E

mask02

Next mask JL E

Masks can be organized hierarchically:

Entry point ! P

maskO01
Branching T E
<& L N4
mask02 mask04 mask06
de e Qe
mask03 mask05 mask07

[exit] QL E

[exit] J E

[exit] 4; E

26

Operator panel ¢ Panel masks

To start working with masks, press Masks button or F7. Mask List dialog box will appear.

== Mask List [_ O] x|
+ add Duplicate 3¢ Delste @ Edit T ove Up 4 Move Down ‘Entry paink: M0 - Timeout: &0 sec -
Num | Mame Y ariable ‘ Caption | Unit ‘ tdenu ‘ Mext ‘ Escape | Branches ‘ Size | Display ‘

select Select el el g 958 OF-2
oz PO pid_gain 3 no P1 [exit] [1] a0 0Op-2
0z Pl pid_ti T 3 ho P2 [enit] 0 80 OP-2
04, P2 pid_td Td: H no MO [exit] 1] 80 0OpP-2
05, co input_type Input: yes C1 [ewit] o 106 0OP-2
8.] output_type Output: = cz [exit] i} 106 0OF-2
0v. c2 regulation Rea: = Cc3 [exit] 1] 112 0P-2
08 C3 reg_cycle Cycle k3 no M0 [ewit] o 80 0OF-2
09. T0 pazsword Pazzwond: no M0 [ewit] 1 594 0OF-2
10. T1 test_mode Test = T [exit] 1 104 0OPF-2

el

To create a new mask click Add or press Insert key. Mask Editor dialog box will appear.

New Mask

Appearance |Variable| Menu | Elanching'

Hame: [mask0l Display: [OP-4 -

Mext mask: [exit] = r—Field position:

e e - m

Caption field text I ® i ‘width: Enabled:

= : JEaphnn‘ 1] :”1 j|13 ﬁ i

Unit Field text: I - Eaild [13 j - j - ﬂ o
Wl it [5 =[=R
W Baoapnf0 0 fn o

Name is a unique string identifier that identifies a particular mask.
Next mask defines a mask that becomes active after E key is pressed.

Escape mask defines a mask that becomes active after P key is pressed. Usually, this key is used
to exit from mask.

Caption field is a short string that will appear on the display to identify the currently edited variable.
Caption position is represented by the yellow rectangle. To move the caption, drag the rectangle
into the desired position. To resize caption, drag the right edge of the rectangle.

Edit field is a display area in which the value of edited variable is displayed. It is represented by the
red rectangle. Edit field should have enough space for editing variable in the desired range. To
move and resize field, drag it like the caption.

Unit field is a short string, similar to caption. Unit field is represented with green rectangle, and it is
commonly used for displaying engineering units.

Bargraph is a semi-graphic horizontal progress bar. Few different styles are available. To use
bargraph, both low and high limits should be defined.

27

New Mask

Appearance Warable |Menu | Elanchmg'

“Wariable; I\ Browze

Lo firnit:
Hi lirwit:
Step:

Decimal places:

IU
100
=
[=
=
[o =
I Enter required
™ Jumpion first press

Operator panel e Panel masks

Cancel

Lo limit and Hi limit define allowed range.

Step defines a value for which the variable will be changed for a single key press.

Decimal places may be used for real as well as for integer and long variables. In the former case,

only the display is fractional (e.g. for decimal places=1, value 254 is shown as 25.4).

Enter required and Jump on first press define method to operate with navigation keys (P, E). Three

combinations are availab

Enter required: no

le:

escape mask

Enter required: yes
Jump on first press: no

escape mask

Enter required: yes
Jump on first press: yes

escape mask

If enter required is false, changed value will be sent to Cybro immediately after up or dn key is
pressed. If enter required is true, changed value will be sent to Cybro only when E key is pressed.

(flashing)

To indicate that change is not confirmed, changed value will flash.

P E
— current mask j———— next mask
Ay
P E
§—— current mask j——— 3 next mask
wi TPE
value changed
(flashing)
P E
L3 current mask P next mask
Ay l
P |value changed| E

28

Operator panel e Program interface

Variable may be entered as menu rather than as numerical value. To define menu entries, run

Mask Editor, click Menu tab and Add as many items as needed.

PewMask T k.

Appearancel Wariable Menu |Branching|

¥ Enable menu

Value

| Caption

i
1
2

Para
Conf
Test

Edit

Delete

Move Up

e

Ifove Do

oK | Cancel |

When executing Cybro program, the display will show items by name, and variable product_type will
take value 0, 1 or 2.

Branching tab provides branching onto different masks according to the entered value. This can be
used to organize parameters into various parameter sets, but also for a password protected
parameters.

PewMask T k.

Appearancel Variablel Menu Eranching |

Add

| Jump to
[alt]

Edit

Delete

i

oK I Cancel |

Active mask takes control of all panel keys except the F key, so it is not possible to use them from
Cybro program at the same time. Mask fields are displayed “over” the user display. After exiting
mask, display content is restored.

If mask is too large to fit into operator panel it will not be activated, and it will operate like an empty
mask. Mask size is displayed in Mask List dialog box. Available operator panel mask memory is
displayed in the Hardware Setup dialog box. To decrease mask size reduce number of menu
entries or reduce edit field width. Reducing caption and unit field width may also save few bytes.

Only one mask can be active at the time.

Program interface

Cybro program can get currently active mask number by reading variable current_mask. When
current_mask is zero, no mask is active.

Program may force execution of a certain mask by writing to variable next_mask. After the mask is
sent, next_mask is set to -1, and current_mask changes accordingly.

29

The following example shows mask handling process:

mask03

) =

[=]rsicagrajia]

Operator panel e Program interface

mask04

N =

BnxDam

CyBro sends
mask04 to
operator panel

operator panel
sends a request
for a new mask

Table shows approximate timings and values for the transition:

1 2 3 4
v \4 \4 v
mask03 variable 20 20 P 25 25 25
current_mask 3 3 3 0 »> 4
next_mask -1 -1 -1 9 4 -1
2-3ms ! 2-3ms 50-100ms

Events are marked by black arrows:

Enter is pressed

Value is sent to Cybro

Request for new mask is sent to Cybro

New mask sent to operator panel and activated

PO~

Red arrows mark value change.
The same transition may be initiated with the following plc program:
if <condition> then

0p00_next_mask:=4;
end_if;

Short gap in current_mask value comes from the network response time. To check if there is an
active mask, program should also check the value of next_mask, like the following example:

if op@@_current_mask=0 and op@0_next_mask=-1 then
op00_next_mask:=10;
end_if;

Both mask control variables may also be accessed remotely, using the A-bus.

30

Serial interface o Features

Serial interface

Features

Cybro controller features multiple communication ports. All of them can be used simultaneously.
Port parameters are set at the compile time, it's not possible to change them within the program.

No Port description Sl Ll AERlLE | PERELE pgm
slave socket master slave
1 COoM1 RS232 serial port yes - PLC yes yes
program
2 COM2 RS232 serial port yes - PLC yes yes
program
3 COM3 RS485 serial port)) PLC) s
ENO EnOcean interface program Y
4 REM free—p_rogrammable)) PLC) yes
radio interface program
5 ETH Ethernet interface, s s PLC s s
TCP/IP protocol y Y program Y Y
SMS interface on
6 | CAN GSM-2 module yes]]] yes

A-bus is native protocol used to send program (A-bus slave), read/write variables (A-bus slave) and
exchange data between controllers (A-bus socket). For more details, check Networking section.

Modbus protocol is developed for industrial applications. It is relatively easy to deploy and maintain
compared to other standards, and places few restrictions on the format of the data. Modbus has
become de facto standard and is now commonly available in various electronic devices.

Free-programmable means PLC program can send and receive messages, which opens up
potential to implement various protocols.

COMS3 port is serial port available on Cybro-3H and Cybro-3W as RS485 interface. On ENO models
it is used for EnOcean transceiver. For more details, check hardware manual.

RFM wireless interface uses 868MHz ISM band to send and receive messages. It is used to control

WD-1 (DALI bridge), WM-1 (Modbus bridge), WR-1 (Modbus relay) and WR-5 (Modbus relay). It
can also be used for Cybro-to-Cybro communication. For more details, check device data sheet.

ETH interface enables plc program to send and receive TCP and UDP messages. Both server and
client operation is supported.

CAN is virtual serial port on IEX bus. It can be used to send and receive SMS messages using
GSM-2 module.

31

Serial interface e Free-programmable mode

Free-programmable mode

With this feature, a wide range of devices can be controlled: various sensors, scales, printers, radio
modems, camera and other. Protocol is implemented using the PLC program.

COM1, COM2 and ETH communication ports are full duplex, COM3, ENO and RFM are half
duplex. Both master and slave operation is possible.

Serial ports have separate transmit and receive buffer. Each buffer is 1042 bytes in size. That
allows for 1024 bytes payload and a few bytes for eventual descriptor and redundancy check.

Rx buffer
T T T T T
message
0o 1 1 1 2 1 | 1040 | 1041
Tx buffer
T T T T T
message
o1 1 1 2 1] 1040 | 1041
Select port

com_select(port: int);
Select must be executed first, before other communication commands. Available ports are:
1 - COM1, RS232 serial port
2 - COM2, RS232 serial port
3 - COM3, RS485 serial port or EnOcean interface
4 - RFM, free-programmable radio
5 - ETH, free-programmable TCP/IP
6 - CAN, free-programmable virtual port

The best place for com_select() is at the beginning of function which implements the protocol. It
may be executed in each scan, that has no effect on current receive and transmit operation.

Create message

Binary messages are created by writing byte by byte to the transmit buffer.
tx_bufwr(pos:int, data:int);

Write data byte to transmit buffer. Position is 0 to 1041, value is 0 to 255.
tx_bufrd(pos:int):int;

Read data byte from transmit buffer. Position is 0 to 1041, value is 0 to 255.

ASCII messages may be created with display print commands. Slot number is zero, x coordinate is
buffer position, y coordinate is ignored. Output goes to the selected transmit buffer.

32

Serial interface e Free-programmable mode

dclr(0);

Fill both receive and transmit buffer with zeros.

dprnc(@, x:int, @, c:char);

Write a single character on position x (same as tx_bufwr()).

dprns(@, x:int, @, str:string);

Write a string enclosed in single quotes (‘abcd'). Special characters are entered as two or three-
character combinations:

combination ASCII code hex code
\n CRLF 0D OA
\r CR 0D
\t TAB 09
\\ \ 5C
\XX any XX

The last option is used to enter any hexadecimal code 00 to FF, e.g. "41'" is the letter 'A'.
dprnb(@, x:int, @, c@:char, cl:char, value:bit);

Write a single character, c0 or c1, depending on the bit value.
dprni(@, x:int, @, w:int, zb:bit, value:int);

Write 16-bit signed integer as ASCII decimal number. Parameter w is width, zb is zero blanking.
dprnl(@, x:int, @, w:int, zb:bit, value:long);

Write 32-bit signed integer as ASCII decimal number. Parameter w is width, zb is zero blanking.
dprnr(@, x:int, @, w:int, dec:int, value:real);

Write floating point value as ASCII number with decimals. Parameter w is total width, including
decimal point and decimals. Parameter dec is number of decimals. Zero blanking is always on.

Send message
tx_start(size:int);

Send the prepared message. Parameter size is the number of characters to transmit.
tx_active():bit;

Check whether the transmitter is active: 0-no, 1-yes.
tx_count():int;

Number of characters left to send. When tx_count() is zero and tx_active() is true, the last character
is transmitting.

tx_stop();

Stop transmitter. Current character will be finished, then tx_active() goes to zero.

33

Serial interface e Free-programmable mode

Start receiver

rx_start(beg_ch:char, end_ch:char, len:int, beg_tout:int, end_tout:int);
Start receiving and define condition to stop.
beg_ch - first character of received message. When receiving is started, all characters are ignored,
until the specified character is received. The character is written in the zero position of the receive
buffer. To receive message with no specific start character, set to zero.
end_ch - last character of received message. When specified character is received, receiver is
stopped (status 2). Character is written as the last byte of the received message. To receive

message with no specific end character, set to zero.

len - expected length of received message. After the specified number of bytes is received, receiver
is stopped (status 3). To receive a message of variable size, set to zero.

beg_tout - maximum waiting time for the first character, in milliseconds. When timeout is reached,
receiver is stopped (status 4). To receive with no time limit, set to zero.

end_tout - maximum time between consecutive characters, in milliseconds. When timeout is
reached, receiver is stopped (status 4). To receive with no time limit, set to zero.

For example, with 1200 bps, 8 bits and no parity; transmission of a single character takes about
8ms (start bit + 8 data bits + stop bit = 10bits, 10bits/1200bps = 8.3ms). In such case, end time is
typically set to about 25ms.

Examples:

rx_start(0,0,0,0,0); // receive continuously
rx_start(0,0,0,0,50); // receive continuously, stop 5@ms after the last character
rx_start(':','\r',0,0,0); // receive message starting with ':' and ending with CR

Maximum message length is 1042 bytes. When one character more is received, receiver is
restarted and the number of received characters starts from 1 again. The buffer is not cleared.

Receiver and transmitter are fully independent.
rx_stop();
Stop receiving immediately (status 1).
rx_count():int;
Returns number of received characters. Function rx_start() reset number of characters to zero.
rx_active():bit;
Check whether the receiver is active: 0-no, 1-yes.
rx_status():int;
Returns receiver status:
0 - receiver active
1 - stopped by stop command
2 - end character detected

3 - requested size received
4 - timeout expired

34

Serial interface e Free-programmable mode

Parse received message
rx_bufrd(pos:int):int;

Read data byte from receive buffer. Position is 0 to 1041, value is 0 to 255.
rx_bufwr(pos:int, data:int);

Write data byte to receive buffer. Position is 0 to 1041, value is 0 to 255.
rx_strcmp(pos:int, str:string):bit;

Compare receive buffer with a specified string. True when string matches, false otherwise.
rx_strpos(pos:int, str:string):int;

Search for the specified string. Search starts from the given position. If string is found, function
returns position of the first matching character, otherwise it returns -1.

rx_strtoi(pos:int):int;

Read ASCII decimal number at the given position. If character at the specified position is space, it is
skipped until a digit is found. Conversion continues until the first non-digit character.

rx_strtol(pos:int):1long;

Read ASCII decimal number at the given position. If character at the specified position is space, it is
skipped until a digit is found. Conversion continues until the first non-digit character.

rx_strtor(pos:int):real;

Read ASCII decimal number at the given position. If character at the specified position is space, it is
skipped until a digit is found. Conversion goes until the first non-numeric character.

Example:

Received message may contain keywords OPEN, CLOSE, AUTO and SET=<value>. Keywords are
sent in no particular order and separated by one or more spaces.

SET=225 OPEN AUTO
Program that parses message according to given specifications:

if rx_strpos(@, 'OPEN')<>-1 then
main_valve=1;
end_if;

if rx_strpos(@, 'CLOSE')<>-1 then
main_valve=0;
end_if;

if rx_strpos(@, 'AUTO')<>-1 then
automatic_mode=1;
end_if;

position=rx_strpos(@, 'SET=");

if position<>-1 then
setpoint=rx_strtoi(position+4);

end_if;

35

Serial interface o Free-programmable radio

Free-programmable radio
Initialize socket

The first command must be com_select(4), it directs consecutive commands to the radio driver.

Rx/Tx buffer
T T

message type reserved
o 1 1 1 2 1 | 62 | 63 64 65] 66 1 |_1040 | 1041

The folowing command is rx_start(), providing parameters to initialize the radio interface:
rx_start(dummy:char, dummy:char, group_hi:int, group_lo:int, timeout:int);

group 32-bit group address, zero means factory default
timeout..... the time after which the reception stops [ms], zero to disable

Wireless devices use factory default address 10 seconds from power on, then switch to configured
address, if one exists. That allows sending new group address to all devices at the same time.
When 10s period runs out, address is locked to protect devices against intrusion. On Cybro, this
process is under the control of PLC program, which allows receiving new address at any time.
Send and receive

RFM radio behaves very much like other serial ports. When message is received, receiver is
stopped and need to be started again. To stop receiving at any time, use rx_stop(). Function
rx_active() returns receiver state (0-off, 1-on), function rx_status() returns more details:

0 - receiver active

1 - stopped by stop command

2 - message received

4 - timeout expired

Command tx_start() begin transmitting prepared message, tx_active() returns transmitter state (0-
off, 1-on). It is active immediately after the start command is executed.

Message type

The type byte (position 64) specifies the content of the message:
0 - DALI (WD-1)
1 - group address (all devices)

2 - Modbus or other serial protocol

Type must be set before the message is sent, and comes with the received message. Type 2 can
be used for any serial communication.

Group address

By default, all devices share the same group address and listen to each other. To separate your
devices, create a new secure group. Once group is created, no other device can listen or interfere
with your data.

Group can be changed within 10 seconds of power up. After that, the group address is locked.

Note that groups share the same bandwidth. To avoid collisions, keep the traffic low or synchronize
requests so that messages don't overlap.

For more details, check RFM demo.cyp.

36

Serial interface o Free-programmable TCP/IP

Free-programmable TCP/IP
Initialize socket

The first command must be com_select(5), it directs all consecutive commands to TCP/IP driver.
With ETH selected, first 10 bytes of buffer are reserved for IP header:

Tx buffer
1 1 1 1 1 1 1 | | 1 1
receiver IP dest port reserved message
o1 11 21 3 4 1 5 6 1 7 1 8 1 9 | 107 111 1 1040 | 1041
Rx buffer
T T 1 T T T T T T T T
sender IP send port reserved message
o 1 1 1 2 1 3 4 | 5 6 1 7 1 8 1 9 10 1 11 1 | 1040 | 1041

Receiver IP address and port must be written by plc program before the message is sent. Sender
IP address and port are written by system when message is received.

The following command is rx_start(), providing parameters to initialize the TCP/IP socket:
rx_start(protocol:char, dummy:char, port:int, autostop:int, timeout:int);

protocol.... 0-none, 1-UDP, 2-TCP master, 3-TCP slave

port.......... controller port through which messages are sent and received
autostop... when active, receiving reply message will close the connection
timeout..... when time runs out [ms], connection is closed; zero to disable

In UDP mode, the controller is ready to receive and transmit UDP messages right away.

In TCP mode, either master (client) or slave (server) operation is selected. When initialized as a
master, Cybro uses receiver address and port to open the connection and send the first message.
When initialized as a slave, Cybro enters listen mode, waiting for connection on the selected port.

To prepare the outgoing message, use tx_bufwr() or display print commands. To send the
message, use tx_start(). Parameter size is the length of the message, without the header. Other
transmit commands are not used.

To check if the message has been received, read the first byte of the buffer using rx_bufrd(). When
result is not zero, message has arrived. The rx_count() returns received size, without the header.
Parsing is the same as with the serial port. When finished, use rx_bufwr() to invalidate the message
and prepare for the next one.

Command rx_status() returns state of the socket:

0 - closed

1 - UDP open

2 - TCP initialised
3 -TCP listen

4 - TCP connected

When message is transmitted or received, timeout is reloaded and rx_active() is set. When timeout
expires, rx_active() goes to zero.

Command rx_active() returns 1 when connection is extablished (status 4). To close connection at
any time, use rx_stop() command. To close the socket, use rx_start() with protocol set to zero.

Reserved local ports are 53 (DNS), 68 (DHCP), 8442 (A-bus LAN), 20000..29999 (A-bus WAN) and
502 (Modbus slave). Other port numbers are free to use.

37

Serial interface o Free-programmable TCP/IP

UDP mode

User Datagram Protocol (UDP) is a simple connectionless protocol that allow devices to send and
receive messages. Sender destination port must be the same as the receiver local port. Message
can be sent to multiple recipients using the subnet broadcast address.

rx_start()

OPEN

rx_active=0/1
rx_status=1

CLOSED

rx_status=0

Once socket is open, use tx_start() to send and rx_bufrd() to detect the received messages.
Although the state is not changed, autostop and timeout can be used by reading rx_active().

TCP master

Transmission Control Protocol (TCP) is a connection-oriented protocol and requires handshaking to
start communication. Once a connection is established, data can be sent. In master mode,
connection is established when controller sends a message to the slave device.

tx_start() Rx

rx_start()

CONNECT

rx_active=1
rx_status=4

INIT

rx_active=0
rx_status=2

CLOSED

rx_status=0
autostop, timeout or rx_stop() Tx

If autostop is set, connection is closed when message is received. If timeout is set, connection

closes when time runs out. Timer is reloaded with each received and transmitted message. Only
one connection can be opened at a time.

TCP slave

In slave mode, controller is intialized and waiting for a connection.

client initiates connection

rx_start() LISTEN CONNECT
rx_active=0 rx_active=1
CLOSED rx_status=3 rx_status=4 .
rx_status=0

client closes connection, Tx
autostop, timeout or rx_stop()

The message can only be sent when the connection is established. When sending the message,
receiver ip address and port are not used, since connection is already established.

If autostop is set, connection is closed when message is transmitted. If timeout is set, connection
closes when time runs out. Slave timeout should be longer than or equal to the master timeout.
Timer is reloaded with each received and transmitted message. Only one connection can be
opened at a time.

38

Serial interface o Free-programmable SMS

Free-programmable SMS

Initialize driver

The first command must be com_select(6), it directs all consecutive commands to the CAN driver.
First 20 bytes are reserved for the phone number:

Tx buffer
1 1 1 1 1 1 I | 1 1
outﬁoing phone number message reserved
11 L 18 3 19 | 20 J 21)] i78 1 170 | 180 | 1 1041
Rx buffer
1 T T T T T T T T T
incoming phone number message reserved
L 11 | 18 1 19 | 20 1 21 | L 178 | 179 | 180 | 1 1041
Phone number consist of ASCII digits, the rest must be filled with zeros:
0x2B Fox34 T ox3a T 0x37 Voxaz T ox31 T ox32 T 0x33 1 ox34 T oxas T ox3e 1 ox37 T oxoo T oxoo | 1" ox00 I
+ 4 4 7 7 1 2 3 4 5 6
o 1 1 3 2 1 3) 4) 5 1 6 J 7 1 8) 9 110§ 1) 12§ 13 | L 19 | 20§ 21

Send and receive

The command rx_start() is issued to start receciving messages. All parameters are ignored.
rx_start(dummy:char, dummy:char, dummy:int, dummy:int, dummy:int);

When message is received, receiver is stopped and need to be started again. Function rx_active()

returns the receiver state (0-off, 1-on). It is up to PLC program to check the sender number, parse

the content of the message and perform the requested tasks.

Command tx_start() sends prepared message to the given phone number. Parameter size is the
length of the message (1..160 bytes), without the phone number.

tx_start(size:int);

Command tx_active() returns transmitter state (0-off, 1-on). When state is zero, transmitter is ready
for a new message.

Transmit and receive are fully independent.
Message format

The format of the message is fully defined by user. To make the parsing simple, we recommend to
use the following syntax:

start setpoint=24 temperature=?
The first is a single command, like start, stop, clean or status. The second and third are used to
write and read the value. There are no reserved words, it's up to PLC program to implement the

parser.

It is always a good idea for the controller to return a confirmation message.

39

Networking e Ethernet setup

Networking

Ethernet setup

Cybro may have a dynamic IP address given by DHCP server, or static IP address set in Kernel
Maintenance. To configure static address, turn on checkbox Static IP address and fill the fields.
DNS server is required when push to domain name is used.

Kernel Maintenance

Current kernel New kemel
MNaD: 10002 File: MN:AProjektivCyProvRuntimetkermel b
Wersion: 307 Wersion: 307
Transfer date: 2019-07-01 14:44:02 Build date: 2013-06-03 22:47:36
Size: 48752 bytes Size: 48752 bytes
Magic: 27183 [0K) Magic: 27183 [0K)
CRC: B3EFh CRC: B3EFh
Hardware model: Cybro-3H Hardware model: | Cybro-3H ~
|E* baud rate: 100kbps 1Ex baud rate: 100kbps ~
MAD alss: MAD ahas: []
Static IP address Static IP address [J10M
IP address: IF address: 132168.1.100
Subnet mask: Subnet mask: 205.255.255.0
Gateway: Gateway: 13216811
DMS server: DINS server: 8.8.88
FPush [Push
Period: Period: ~
IF or URL: IP or URL [:port]:
]

Cybro with static IP is accessible right after power-on. Dynamic address may need a few seconds,
and up to a minute if controller is connected in a new network. When DHCP server is not available,
Cybro will have an invalid IP address (0.0.0.0).

Checkbox 10M is used to disable baud negotiation and force 10Mbps. It may be used when
negotiation fails, for whatever reason.

Cybro has 6-byte MAC address in form 00-CB-00-xx-xx-xX, where last three bytes are serial
number (NAD). For example, Cybro 20000 (0x4E20) has MAC address 00:CB:00:00:4E:20.

40

Networking e Connection options

Connection options
There are several ways to connect programming environment and the controller:

LAN, IP address is detected automatically

Direct connection using limited broadcast

Each controller has it's own static IP address

All controllers share a common IP address (proxy)

Environment Options

Editor Colors Printing

Connection:

(®) Ethernet
(D USE or serial

Ethernet

Adapter: | Intel[R) Ethernet Connection (2] 12194 [192.168.1.21) ~

(®) LAN, automatically detect IP address [default)

() Direct connection using limited broadzast

(O) Each cortroller has it's own static |P address

() &40l contrallers share a common 1P address [prosy)
IP addrezs or domain name [:port]:

Copy seszion [0

Serial
Fort: | COMI: Communications Part [COMT] w itk diey

e
RTS/CTS

[Extra timeout for slow connection 10000 e

[Extra retiies for unreliable connection 3

[Use transaction id ignared if A-bus protection is active]

Sunchronize program with PLC

Synchronize RTC ta PC clock

I ak. I | Cancel | Apply

Session id is used when connection is going through server based on CybroWebScada.

Extra timeout and Extra retries may be used when communication channel is slow. Transaction id
adds an unique id to each request/acknowledge pair, avoiding problems with delayed and lost
messages. It can't be used if A-bus protection is active.

Recommended settings, depending on network speed:
roundtrip transaction id off transaction id on

extra timeout = extra retries | extra timeout @ extra retries
local network

. 0..5ms - - - -
connection
wired internet 10..100ms 200ms 2X 100ms 3x
3G/4G/5G 10..200ms 500ms 5x 200ms 5x
connection

Synchronize program with PLC means the Start button will also send program. Synchronize RTC to
PC clock means the controller real-time clock will be updated when program is sent.

41

Networking e Connection options

LAN connection

T e ———
Cad Law T aw e [T)

e — | —

Cybro-3 Cybro-3 Cybro-3

This is the most common setting, all devices are in the same subnet. IP address may be dynamic
(DHCP) or static. CyPro uses subnet broadcast (192.168.0.255) to automatically detect IP address.

USB or serial connection

UsSB —_—
o

Connect micro USB cable, set environment options to USB or serial, then select port "USB-SERIAL
CH340". Connection can be used without power supply. USB provides power supply for CPU,
inputs and outputs are inoperative.

Direct connection (no router)

Ethernet O —
t_j E'j :-_j

This connection is used in case of emergency, when no valid IP is available. Messages are
transmitted as limited broadcast (255.255.255.255:65535). Don't open CyPro before
autoconfiguration address (169.254.x.x) is assigned to PC.

Internet connection

Cybro-3 Cybro-3

internet

Internet connection has to solve two problems: how to get ip adddress of the other party, and how
to get through the router. For more information, check hardware manual, chapter internet. For more
details how to set the connection, check the documentation of the tool used.

42

Networking e Socket interface

Socket interface

Socket interface is used for cybro-to-cybro communication. A socket is group of variables passed
from one controller to another. User defines a matching pair of sockets. Sockets must have the
same id and must use the same variables. Type and order matters, name is not important.

outside_temperature outside_temperature
outside_humidity outside_humidity
wind_direction wind_direction
wind_speed wind_speed
id=1 id=1
output socket input socket

Socket id can be in the range 1 to 255.

Multiple sockets can be used at the same time:

Cybro-3 Cybro-3

output
sock id=1

A4
A4

input
sock id=1

Cybro-3 Cybro-3

Controller receives only sockets defined in its program, all others are ignored.

Sender does not know if the receiver actually received the socket. The acknowledge can be sent
back through a second socket pair.

Receiver does not know who sent the message, but socket may include sender id as a variable
within the socket.

Socket size is limited by the maximum size of A-bus message (1024 bytes).

43

Networking e Socket interface

Sending is initiated in several ways:

1. Periodic 1s

2 ol e N b e e S R N N

sock_var — 1 | I | I A

sock_var I 1

sock_var | | I
1s

Socket is transmitted once a second.

2. Periodic 10s

4+ 4+

sock var 1 1 I |

sock_var 1

sock_var | |
10s

Socket is transmitted once every ten seconds.

3. On-request

4+ 4+

sock_req
sock_var I |

sock_var | | I

< cleared by kernel

request by plc program

Socket is transmitted on request from plc program.

Transmission begins when request bit is set. Kernel responds by clearing the request and sending
the socket. Request is the first bit variable in the socket. It is transmitted as 1, so it can be used by
receiver to check if the socket has arrived.

4. On-change
4+ 1 1 + 1+
sock_var . | -
sock_var ['
sock var | I

Socket is transmitted each time one of socket variables is changed. Controller must be running.

44

Networking e Socket interface

On-request example

On-request socket may be used to send event to multiple controllers. One controller sends the
socket, all others will receive it. Number of controllers is not limited.

The example shows how to turn off lights controlled by two controllers.

1. if key pressed then 3. if key pressed then
. request:=1 request . request:=1
2. if request<>@ then if request<>@ then 4,
turn lights off on-request turn lights off
socket
plc program plc program

Program in both controllers is the same.

When receiver needs to know request source, 1 is local, 3 is remote (cast to bit when comparing).
Request will be active for at least a single scan.

On-change example

On-change socket is used to synchronize a value between controllers. Each controller may modify
the value, all others receive the new value. Number of controllers is not limited.

The example shows a light level setting (0-100%), synchronized between controllers.

|
|

1. if key pressed then > if key pressed then
light_level++ E> light_level |::> light_level++
2, output:=light level output:=light_level 4,
on-change
plc program socket plc program

Each controller has the same program, local i/o assignment may be different.

45

Features ¢ Real-time clock

Features

Real-time clock

Real-time clock (RTC) consist of a hardware clock and calendar. When power is down, it runs from
internal battery. For accuracy and data retention time, check hardware manual.

RTC is synchronized to PC when program is sent to the PLC. To enable or disable synchronization,
use checkbox Environment/Communication/Synchronize RTC to PC Clock. RTC is also synced with
OPC server and HIQ Commander mobile application. It can be set also with PLC program.

To read and write time, use:
rtc_hour:int;

rtc_min:int;
rtc_sec:int;

hour 0..23
min 0..59
sec 0..59

To read and write date, use:

rtc_year:int;
rtc_month:int;
rtc_date:int;

year 2000..2099
month 1..12
date 1..31

To read and write day of the week, use:
rtc_weekday:int;

0 - Sunday

1 - Monday

2 - Tuesday

3 - Wednesday
4 - Thursday

5 - Friday

6 - Saturday

To set real-time clock, write new time/date to variables and set the request flag:

rtc_write_req:=1;

46

Features ¢ NAD alias

NAD alias

Each controller has unique serial number, used as communication address (NAD). Serial number is
permanent and can not be changed.

NAD alias is a second, replacement address configurable by user. Alias functions same as the
original NAD, controller may be addressed both ways.

f 3 ora
=
4547
replacement
NAD alias = 4004

To set new NAD alias, open Kernel Maintenance dialog box, enter alias and send.

Because of security issues, alias is used in local communication only. When controller is connected
to the internet, the original serial number is used exclusively.

Password protection

Cybro controller can restrict access to it's data with password. Depending on selected level,
protection may cover only program, program and variables, or everything. For example, when
protection level is Program protected, anybody can read and write variables, but needs a password
to send a new program.

Program Properties ﬂ

Genela\l Modbusl Masterl Push Pratection |

A-bus ethernet protection level

€ Unrestricted access

¢~ Program protected

" Program, variables and sockets protected
% Full pratection, CuBra nat wisible

Fassword: |FardPerfectd2

Mote: protection level and pazzword are common
far all pragrams in a project.

Password protection affect only Ethernet interface. Serial ports are not restricted (including USB),
even when full protection is used.

Password may contain any combination of letters and numbers of a reasonable length. It is case
sensitive. Don't use spaces or national characters.

Password is common for all programs in project, it's not possible to define individual password for
each controller. Password stored in project file is not secure, so keep your project safe.

When password is used, communication option Transaction id can not be used.
To send a new program to protected controller, use command Erase protected program.

If you forget the password, unlock controller using the USB port.
47

Features ¢ Modbus slave

Modbus slave

Modbus communication protocol is published in 1979, for use with programmable logic controllers.
It has since become de facto standard for connecting various devices.

Cybro supports:

e Modbus RTU slave (RS232/RS485)
e Modbus TCP slave (Ethernet)

Modbus data model describes how modbus coils and registers are translated to Cybro memory.

Data model Data model Data model Data model Data model
Plc data model: Plc data model: Plc data model Plc data modek Plc data modet
(®) Entire plc data memory) Entire: plc: data memory) Entire plc data memory) Entire: plc data memory) Entire plc data memory
O Coil/register anay ®) Coil/register aiay (@) Coil/register aray O Coil/register array O Coil/register array
(O Selected ple variables O Selected plc variables O Selected ple variables @) Selected ple variables (®) Selected plc varisbles
Modbus address: Modbus address: Modbus address: Modbus address:
quential @) Sequential O Sequential @) Sequential (O Sequential
ndom selectior () Random selection (®) Random selection () Random selection (®) Random selection

array array| —

I‘.
\
A
/ \
/ \
/ \
/ \
/ \
| ~
\ I‘-& AN
\ \
\
\
A\

™~

cybro ~ modbus cybro modbus cybro modbus cybro modbus < cybro modbus

Modbus model include coils and holding registers. Discrete inputs and input registers are not
supported.

When "Entire plc data memory" is selected, list of available coils/registers can be exported in csv
format. List may be imported by modbus master, refering variables by name instead of a number.

Function codes:

code hex command

1 01h READ_COILS

3 03h READ_ HOLDING_REGISTERS

5 05h WRITE_SINGLE_COIL

6 06h WRITE_SINGLE_REGISTER

15 OFh WRITE_MULTIPLE_COILS

16 10h WRITE_MULTIPLE_REGISTERS

Other codes will be rejected as ILLEGAL_FUNCTION (exception code 01h).
Data types:

- bit (0 or 1) for coils
- int (16-bit integer) for registers

Other data types are not supported.

When Modbus RTU master is needed, use ModbusRtuMaster.cyp from Examples.

48

Features e Mobile application

Mobile application
HIQ Commander is mobile app used to monitor, control and configure your plc program.

User should mark the variables, open app and start autodetect. The app displays a list of objects,
each representing a single variable. Each object is used to display variable in one of the predefined
modes. The mode can be configured with tags, which are entered in the variable description. Object
can also be used to change the value, by using the action tag.

Insert Mew Variable el 10 setup variables, open allocation editor,
variable properties, and do the following:

Mome: |1y utpu | L= « tick checkbox "visible in smartphone scada"
] Betentive wray |0 to |0 = « enter tags into the variable description
LIEE

Tags may be placed anywhere within
Defaul value: l:l description, and separated by space or comma.
Dieseription: Each tag has default setting. When default is
Click ta tumn the relap output an and off [name="F elay output”, aIright, the tag doesn't need to be specified.

unit=00, action=2).

Make sure the variable is not hidden, and the
allocation file is sent to the controller.

Wigible in ale file:

(") User, selected to be visible to end user . . o
(®) Systemn, visible for system taals [default) The number of objects is not limited.

(") Hidden, naot visible for any external tools

When plc is configured, open HIQ Commander
and start autodetect. Ensure the mobile is on
Wi-Fi, the same network as the controller. If

[ok | | cancel | | alright, the list of objects will appear.

Wizible in smartphone zcada

To use the application remotely, over the internet, ownership of the controller must be confirmed.
Ensure the mobile is on Wi-Fi, the same network as the controller, open Settings and press Enable.

For more details, open HIQ Commander demo.cyp from CyPro examples.

Binary object

name unit icon
| | |

Relay OutpL‘It Q)I'(O
@

Tags available for the binary object:

type........ object type, bit or int (default is bit for bit variables, int for others)
nameobject name (default is variable name)

unit......... short text displayed on the right (default is none)

icon........ icon number, check appendix (default is 0)

action0-none, 1-write, 2-toggle (default is 0)

value...... value that will be written by write action (default is 1)

49

Features ¢ Mobile application

Integer object

name unit
| |
Indoor temperature °C 24.5
L ’
bar or slider number or list

Tags available for the integer object:

type........ object type, bit or int (default is bit for bit variables, int for others)
nameobject name (default is variable name)

unit......... short text displayed on the right (default is none)

dec......... number of digits after decimal point (default is 0)

list.......... list of strings, separated by 'or' symbol (OFF|HEAT|COOL) (default is none)
bar......... 0-none, 1-show bargraph (default is 0)

min......... minimum for increment, slider, spin edit (default is 0) and keypad (default is none)
max........ maximum for increment, slider, spin edit (default is 100) and keypad (default is none)
step........ step size for increment, slider and spin edit (default is 1)

action.....0-none, 1-write, 2-toggle, 3-increment, 4-slider, 5-string list, 6-spin edit, 7-keypad (def 0)
value...... value that will be written by write action (default is 1)

Tags are entered in the description field of the variable. General form is <tag>=<value>. The order
and position doesn't matter. String with spaces must be enclosed in quotation marks. There should
be no spaces before and after the '=' sign. Object name can be changed within application. Keypad
action has no default limits, the limits are applied only when min and max are explicitely stated.

Tabs and order

The order of objects is determined by variable type and position in the allocation list. Bit variables
are at the top, followed by integers, long integers and finally floats. To specify the order of objects
manually, use the following tags:

pages.....tab names (default is tabs not visible)
poS......... position and page number (default is as in the allocation list)

Tag pages defines the name for each tab, and consequently the total number of tabs. It should be
specified only once, within the first variable. Tag pos defines position of object in the list. Numbers
can be skipped, which may be useful when objects are added later. The hundreds digit has a
special meaning, it defines the tab on which the object is displayed.

OUTPUT TEMPERATURE SETTINGS

Relay output |QXO CO 100 Outside | °C 18.2 200 Living room EE 220 300
[— E—) m—

Relay output |QX1 CO 101 Living room | °C 221 201 Heating water l °C 45.0 310
[E — =

Relay output [ax2 ool ™ Water intake | -«c 263 | 2 HVAC mode | HEar| 2

Relay output |QX3 OD 103 Water output | °C 42.7 211

Relay output | Qx4 104

o

bit output_gx00: pos=100, action=2, pages=OUTPUT|TEMPERATURE|SETTINGS
bit output_gx01: pos=101, action=2

bit output_qx02: pos=102, action=2

int hvac mode: pos=320, action=5, list=OFF|HEAT|COOL

50

Features ¢ Mobile application

Spacer

spacer

Relay outpﬁts

spacer....visual separator between objects, with optional title (default is none)

Actions

> hone
: write

: toggle
:increment
: slider

: string list

AP WN-20

6: spin edit

7: keypad

object is read only
write a single value
switch between 0 and 1

increment by step, positive or negative, loop back when min/max is reached

drag handle left and right to adjust the value
select a single choice from the list (0, 1 or 2)

HVAC mode

@® OFF

(O HEAT

O cooL

Cancel OK

enter value by turning the wheel

Setpoint °C

220

Cancel OK

enter value digit by digit

Cancel 0K

Setpoint °C
22.0
1 2 3 &
4 5 6

When EE variable is modified, EE magic and write request are applied automatically. When RTC

variable is modified, RTC write request is applied automatically.

51

Features e Mobile application

Internet

In a local network, application talks directly to the controller. When mobile is remote, the traffic is
routed through the server.

R

‘ |

my.hig-home.com

mobile internet

J
|
i

cybro

There are two ways to register to the server:

« autodetect, turn on enable internet access switch
* settings, press internet access enable button

Mobile must be in the same network as the controller. Both procedures are fully automatic. Server
creates a record for both mobile device and controller.

For a better security and access control, you may create the user account. Sign-in to http://my.hig-
home.com, then add your controller to the list. Account is not requred for internet access.

To do this, you need CyPro online monitor. Set authentification_req, copy authentification_code and
type serial number and the 6-digit number into the online form. Description is optional.

H I Q U n ive rS e damir.skrjanec@cybrotech.hr

Status Controllers Phones Settings

Serial Description Created Last push Status Properties Ping Enable Delete
10020 Bohinjska 2022-11-02 12:26 - - [3 @ "4 -
24002 Gredicka 2016-09-06 03:32 2023-01-09 16:07 - & @ 4 -

Add new controller

<Aroboting -

Terms

52

Features e Mobile application

The mobile is automatically visible in the phones list.

H I Q U n ive rS e damirskrjanec@cybrotech hr

Status Controllers Phones Settings Logout

Phone Maker Model Carrier Registered Last login Enable Delete
AGS2-W09 HUAWEI AGS2-W09 2020-02-12 03:50 2022-11-05 11:22 v -
NEO-U9-H MINIX NEO-U9-H 2018-09-29 19:53 2022-02-08 01:39 v -
SM-G991B Samsung SM-G991B Al HR 2022-11-02 12:20 2023-01-09 16:00 v -

Disable new phones

d.r0Doting

To add new phone, run the same procedure again.

Contact
Pri

Terms

To secure the system, disable adding new phones. That will ensure maximum security, nobody will

be able to gain control, even if they have access to your local network.

Examples

Relay output

QX0

@

bit relay_output;

description: Click to turn the relay output on and off (name="Relay output", unit=QX0, action=2).

Output power

kW

2.1

int output_power;

description: Measured output power for all phases (name="Output power", unit=kW, dec=1).

House temperature

°C

24.5

int temperature;

description: Measured temperature (name="House temperature", unit="C, dec=1, bar=1, min=100,

max=300).

53

Features ¢ Mobile application

Setpoint °C
- 22.0
int setpoint;

description: Setpoint temperature (name="Setpoint", unit="C, dec=1, min=100, max=300, step=5,
action=4).

HVAC mode

HEAT

int hvac_mode;
description: HVAC operating mode (name="HVAC mode", list=OFF|HEAT|COOL, action=>5).

Heating and cooling
HVAC mode

HEAT

int hvac_mode;
description: HVAC operating mode (spacer="Heating and cooling", name="HVAC mode",
list=OFF|HEAT|COOL, action=5).

54

Features ¢ Command line options

Command line options

Command line options are specified upon starting CyPro. They are used to automatically perform
some tasks, such as sending a program. Using command line options, CyPro may be used as
external compiler for another application.

SCADA CyPro

CyPro.log
Command line options are:
INEW [filename.cyp] Create a new project. Filename is optional.
/OPEN filename.cyp Open existing project with specified filename.
/ISAVE Save project.
/ISAVEAS filename.cyp Save project under specified name.
[EXIT Exit CyPro.
/NAD number Select program. If specified NAD exists, that program will be
selected, otherwise NAD is appended to current program.
/AUTODETECT Hardware autodetect.
/ISTART Compile, send (only if different) and run.
/ISTARTALL Start all programs in project.
/ISTOP Stop current program.
/SEND Send current program.
/HIDDEN Silent operation, do not show any window or dialog box.

Filename may be given as name or full path. When file name contain spaces, use double-quote
("my file.cyp"). If an operation requires user input to continue execution, default option is used
automatically. For example, when autodetect asks for a network address, default address (zero) will
be used automatically.

When started with command line options, CyPro creates log file with all commands and results. Log
file is saved in CyPro directory (c:\Program Files (x86)\Cybrotech\CyPro-3\CyPro.log).

When /HIDDEN mode is used, CyPro will automatically exit after executing the last command.
When using command line options, it is advisable to turn on checkbox Allow multiple instances in

Environment Options. If only single instance is allowed and CyPro is already running, command line
requests will be proceeded to the active copy.

55

Features ¢ Command line options

Examples:

cypro.exe myfile.cyp

Start CyPro and open project myfile.cyp.
cypro.exe "c:\My Documents\myfile.cyp"

Start CyPro and open project myfile.cyp in specified directory. As path may contain spaces, quotas
are required.

cypro.exe /HIDDEN /OPEN "myfile.cyp" /START /EXIT

Start CyPro, open an existing project (myfile.cyp), start PLC (compile, send & run) and exit.
Operation is hidden, no window or dialog box will appear. Possible errors are saved in CyPro.log.

cypro.exe /HIDDEN /NEW /AUTODETECT /SAVEAS "myfile.cyp" /EXIT

Start CyPro, open a new project, start Autodetect, save as myfile.cyp and exit. Operation is hidden,
no window or dialog box will appear. Possible errors are saved in CyPro.log.

cypro.exe /HIDDEN /NEW /NAD 4000 /AUTODETECT /SAVEAS "myfile.cyp" /EXIT

Start CyPro, open a new project, add new NAD, start Autodetect to detect connected IEX-2
modules, save as myfile.cyp and exit. Operation is invisible, no window or dialog box appears.
Possible errors are saved in CyPro.log.

cypro.exe /HIDDEN /OPEN "myfile.cyp" /AUTODETECT /START /EXIT

Start CyPro, open an existing project (myfile.cyp), start Autodetect (assuming the project has no

hardware setup and network address), start PLC (compile, send & run) and exit. Original file remain
unchanged. Operation is silent, no window or dialog box will appear. Errors are saved in log file.

56

Getting started ¢ Command line options

Getting started

This example, a simple timer activated with a key, will show steps to get program running.

op00_key_f | |

cybro_qgx00

bs

Step 1: hardware

The example will use Cybro controller and OP-2 panel. Connect power supply, ethernet and panel
according to hardware manual.

Open CyPro and select File/New Project. Open Hardware Setup and run Autodetect.

lalx

By Autodstect 2 Clear WG Clear Al * MoveUn 4 Mave Down B Properties

Slot | Mame | Description | HAD | -
PU Urit CypBro-2 wBro-2,

Slat 1 op-z Operator panel: LED 2416, 5 keyz 000041

EEl)

Step 2: variables

Project will use variable of timer type. Start Allocation Editor, and press Insert:

Insert New Yariable x|
Mame: ItimD Type: Itimer j

Betentive [~ Amray o ID ill
Permanent [~ Aray hi ID ill

Default valus: I

LComment:

| hate writing comments.

Additional properties:

Preset

day: hour: mir; IBC MEeC:

= | =1 = = =

e 8 e O O) O
Tupe Base
{* Pulse Az
= On-delay = 10ms

Ok I Cancel

Enter name, select type, preset and time base.
Step 3: write code
PLC code connects the OP key to the timer input, and the timer output to the output relay:

tim@.in:=o0p00_key_ f;
cybro_qgx00:=tim.q;

57

Getting started ¢ Command line options

Step 4: run
To compile and send program, just press Start button. Status line shows the program is running.

To check operation, open Variable Monitor, add variables, and press F key.

5I
R A ODT @ » m | BT varisbleset 1 =
History Wariable name
Il
Il
cybro_qgu00 0 Dec
R ————|

Graph in the left pane shows the program is running as expected.

58

Appendix e Data type summary

Appendix

Data type summary

Elementary
type width range
bit 1-bit 0..1 ("
integer 16-bit signed -32768..32767
long 32-bit signed -2147483648..2147483647
real 32-bit single precision -3.4x10%..3.4x10%

(*) each bit variable is stored as a byte, casting to bit allows 0..255 range

Input/Output
type width type description
¢ 1-bit bit digital input
gx 1-bit bit digital output
iw 16-bit integer analog input
qw 16-bit integer analog output
Timer
field type access description
in bit read write control input
q bit read write timer output
pt long read write preset time
et long read write elapsed time
Constants
decimal

address := 12345; // 16 or 32-bit signed integer
binary

address :

2#10111; // 16-bit signed integer
hexadecimal

address := 16#FFFF; // 16-bit signed integer

59

Appendix e Structured text summary

Structured text summary

Operators

+ same
- same
% same
/ same
mod % same
not ! same
and & same
or | same
xor A same
shl, shr | <<>> same
rol, ror same
= == bit
<> I= bit
<, <= bit
> >= bit
= same
Flow control
if...then...else

case...of

for...do

while...do

Appendix e Structured text summary

Edge detect
positive edge detect (zero to one)
fp(b:bit):bit;
negative edge detect (one to zero)
fn(b:bit):bit;
Type conversion
evaluate expression and convert to desired data type

int(expression):int; // convert expression to integer
long(expression):long; // convert expression to long, respect sign
ulong(expression):long; // convert expression to long, assume unsigned
real(expression):real; // convert expression to float
blong(expression):long; // assume bit pattern as long, no conversion
breal(expression):real; // assume bit pattern as real, no conversion

Serial ports
port select

com_select(port:int); // 1-COM1, 2-COM2, 3-COM3, 4-RFM, 5-ETH, 6-CAN
transmit

tx_bufwr(pos:int, data:int); // write data byte to tx buffer
tx_bufrd(pos:int):int; // read data byte from tx buffer
tx_start(size:int); // send message

tx_stop(); // stop sending

tx_count():int; // number of characters sent
tx_active():bit; // ©-stopped, 1-transmitting

receive

rx_start(beg_ch:char, end_ch:char, len:int, beg_tout:int, end_tout:int); // COM
rx_start(dummy:char, dummy:char, group_hi:int, group_lo:int, timeout:int); // RFM
rx_start(protocol:char, dummy:char, port:int, autostop:int, timeout:int); // ETH
rx_start(dummy:char, dummy:char, dummy:int, dummy:int, dummy:int); // CAN
rx_stop(); // stop receiving

rx_count():int; // number of characters received

rx_active():bit; // ©-stopped, 1-receiving

rx_status():int; // @-receiving, 1-stopped, 2-end char, 3-length, 4-timeout

parse received message

rx_bufrd(pos:int):int; // read data byte from rx buffer
rx_bufwr(pos:int, data:int); // write data byte to rx buffer
rx_strcmp(pos:int, str:string):bit; // compare rx buffer with string
rx_strpos(pos:int, str:string):int; // find string in rx buffer
rx_strtoi(pos:int):int; // read number from rx buffer
rx_strtol(pos:int):long; // read number from rx buffer
rx_strtor(pos:int):real; // read number with decimals from rx buffer

61

Appendix e Structured text summary

Display functions

dclr(slot:int); // clear display

dprnc(slot:int, x:int, y:int, c:char); // print character
dprns(slot:int, x:int, y:int, str:string); // print string
dprnb(slot:int, x:int, y:int, c@:char, cl:char, value:bit); // print c@ or c1
dprni(slot:int, x:int, y:int, width:int, zb:bit, value:int); // print integer number
dprnl(slot:int, x:int, y:int, width:int, zb:bit, value:long); // print long number
dprnr(slot:int, x:int, y:int, width:int, dec:int, value:real); // print decimal number
Legend

slot.....ccceee slot number (0-write to selected serial buffer)

) CUTT x position (0-left)

Yoereeeeenrneeeanns y position (0-top)

width........... number of characters to print

Zb.iien, zero blanking (0-no, 1-yes)

dec............. number of decimal places

Cotereerrnreeeaans single character

stro............ array of characters enclosed in single quotes

value........... data to print

Network functions

get_nad():1long; // read current A-bus address (alias or serial)

get_serial():1long; // read controller serial number

get_ip():1long; // read controller IP address

set_ip(ip_address:long, subnet:long, gateway:long, dns_server:long); // set IP address

Return value
return value from a function

result := a + b; // return sum of a and b

62

Appendix e Program examples

Program examples
Library

Ready-made application or set of functions, that can be invoked to carry out the particular task.
Generally, library functions are used as they are, without modifying the code.

CybroDashboard demonstration of controller features and quick test of main components
DaliConfigurator assign short addresses, configure groups and set parameters
EnOceanGateway gateway for EnOcean wireless devices, including configuration and usage
FunctionLibrary collection of standard functions used to carry out common tasks
Template

Fully functional application that can be modified and included in the user program.

AccessControl reception desk, manage access for hotel rooms and spaces
DaliControl use cybro controller to control DALI ballasts

DaliControl DT8 control DALI DT8 RGB ballast, template for multiframe messages
HIQ Commander demo use mobile phone to control cybro application over the internet
HTTP client read variables from www.solar-cybro.com server

HTTP server cybro controller as a simple web server, implementing HTTP protocol
ModbusRtuMaster read power meter registers using serial communication
ModbusTcpMaster fully functional application to read/write data from multiple slaves
RFM demo configure cybro wireless devices and control WR-1 or WR-5 relay
TCP demo send and receive custom TCP messages between two controllers
UDP demo send and receive custom UDP messages between two controllers

Hardware demo

Fully functional application that shows how to use the particular hardware.

DmxController control professional lighting using COM-DMX module
ModbusRtuMaster w COM-MB read power meter registers using COM-MB module
PhilipsWizControl control Philips WiZ light bulb dimming using free programmable UDP port

Serial port w COM-PGM free programmable serial port using COM-PGM module
Demo program

Short demonstration how a particular task can be implemented.

DigitalFiltering remove noise and create a smooth output response

PidController simple implementation of PID (proportional integral derivative) controller
MaskDemo shows how to enter parameters using the operator panel
MsTimerDemo how to implement precise 1ms resolution timer

SetlpAddress set controller IP address using PLC program

SocketDemo connect two or more controllers using cybro sockets

SosBuzzer send SOS message using Morse code

Sun position calculate if sun is visible for given date, time and location on the globe

63

Appendix e Function library

Function library

Function library is a collection of commonly used functions, written in structure text. It is a part of
CyPro package, located in \CyPro\Examples\FunctionLibrary.cyp. To use a function, copy and paste
from library (right click project tree) to your program. For more details, check function source.

bit manipulation

int_to_long(lo,hi: int):long; // two 16-bit integers into a single long
long_to_real(x: long):real; // bit-to-bit copy, without conversion

real_to_long(x: real):long; // bit-to-bit copy, without conversion
byte_to_real(byte3, byte2, bytel, byte@: int):real; // four bytes into float
ip_to_long(ip3, ip2, ipl, ip@: int):long; // four byte ip address into a single long
datetime(year, month, date, hour, min, sec: int):long; // 32-bit ms-dos datetime

elementary functions

abs(x: int):int; // absolute value of integer
min(x, y: int):int; // smaller of two integers
max(x, y: int):int; // bigger of two integers
round(x: real):real; // round to the closest integer
frac(x: real):real; // return fractional part
sqrt(x: real):real; // square root

trigonometric functions

sin(x: real):real; // sine of x

cos(x: real):real; // cosine of x
atan(x: real):real; // arctangent of x
atan2(x, y: real):real; // arctangent of x/y

exponential and logarithmic

exp(x: real):real; // exponential of x

In(x: real):real; // natural logarithm of x (base e)
loglo(x: real):real; // logarithm of x with base 10
log(x, base: real):real; // logarithm of x with given base

cyclic redundancy check

crc8(len: int):int; // 8-bit cyclic redundancy check
crcl6(len: int):int; // 16-bit cyclic redundancy check
crc32(len: int):long; // 32-bit cyclic redundancy check

pseudo-random generator
rnd(range: int):int; // simple pseudo-random generator
other functions

display_bargraph(slot,x,y,width,min,max,val: int):void; // OP semi-graphic bargraph

64

Appendix e Instruction list summary

Instruction list summary

Move

Id
Idn
st
stn
set
setc
res
resc

Logic

cpl
and
andn
or
orn
xor
xorn
shl
shr
rol
ror
fp
fn

Arithmetic

neg
add
sub
mul
div
mod

Compare

€q
ne
gt
ge
It
le

Branch

jmp label

jmpc label
jmpnc label

cal subroutine
calc subroutine
calnc subroutine

move variable or constant to accumulator
move complement of variable to accumulator
move accumulator to variable

move complement of accumulator to variable
set accumulator or variable

if condition true set variable

clear accumulator or variable

if condition true clear variable

complement accumulator or variable

logical and accumulator with variable or constant

logical and accumulator with complement of variable or constant
logical or accumulator with variable or constant

logical or accumulator with complement of variable or constant
exclusive or accumulator with variable or constant

exclusive or accumulator with complement of variable or constant
shift left accumulator, set LSB to zero

shift right accumulator, set MSB to zero

rotate left accumulator, copy MSB to LSB, 32-bit only

rotate right accumulator, copy LSB to MSB, 32-bit only

detect positive flank, accumulator only

detect negative flank, accumulator only

change sign of accumulator

add variable or constant to accumulator

subtract variable or constant from accumulator

multiply accumulator with variable or constant

divide accumulator with variable or constant

remains of dividing accumulator with variable or constant

test if accumulator equal to value

test if accumulator not equal to value
test if accumulator greater than value
test if accumulator greater or equal value
test if accumulator lower than value

test if accumulator lower or equal value

unconditional jump to position indicated by label
jump if condition true

jump if condition not true

call subroutine

call subroutine if condition is true

call subroutine if condition is not true

65

Appendix e Instruction list summary

Type combinations

=)
=

int long | real | acc const var

Id
Idn
st
stn
set
setc
res
resc
cpl
and
andn
or
orn
xor
xorn
shl +
shr +
rol
ror

e I S o e R e A R
I S o e o B A A R

+ |+ [+]+

+ 4|+ [+

-+

fn +
neg
add +
sub +
mul +
div

mod

+ |+ [+ +

+ o+ |+]+

ne +
gt

ge
It

e o e e N R
S S S o e R S
A A A AL

+ |+ +

jmp
jmpc
jmpnc
cal
calc
calnc
x-to-y + + + + +

e S I S o I S R o o g [o g S

66

Appendix e Mobile app tags

Mobile app tags

Binary object

name unit icon
| | |

Relay outlet Q&(O
@

type........ object type, bit or int (default is bit for bit variables, int for others)
nameobject name (default is variable name)

unit......... short text displayed on the right (default is none)

icon........ icon number, check appendix (default is 0)

action.....0-none, 1-write, 2-toggle (default is 0)

value...... value that will be written by write action (default is 1)

Integer object

name unit
\ |
Indoor temperature °C
24.5
s >
I N
bar or slider decimal or list

type........ object type, bit or int (default is bit for bit variables, int for others)
nameobject name (default is variable name)

unit......... short text displayed on the right (default is none)

dec......... number of digits after decimal point (default is 0)

list.......... list of strings, separated by 'or' symbol (OFF|HEAT|COOL, default is none)

bar......... 0-none, 1-show bargraph (default is none)

min......... minimum for increment, slider, spin edit (default is 0) and keypad (default is none)
max........ maximum for increment, slider, spin edit (default is 100) and keypad (default is none)
step........ step size for slider and spin edit (default is 1)

action0-none, 1-write, 2-toggle, 3-increment, 4-slider, 5-string list, 6-spin edit, 7-keypad (def 0)
value...... value that will be written by write action (default is 1)

Pages and order
spacer....visual separator between objects in the list (default is none)

pages.....tab names (OUTPUT|TEMPERATURE|SETTINGS, default is no tabs)
poS......... position and page number (100, 101, 102, 200, 201, 300, 301...)

67

Appendix e Mobile app icons

Mobile app icons

N

2

icon 00 off.png icon 00 on.png icon 01 off.png icon 01 on.png icon 02 off.png icon 02 on.png

icon 03 off.png icon 03 on.png icon 04 off.png icon 04 on.png icon 03 off.png icon 03 on.png

icon 06 off.png icon 06 on.png icon 07 off.png icon 07 on.png icon 08 off.png icon 08 on.png

S

I
©]

icon 09 off.png icon 09 on.png icon 10 off.png icon 10 on.png icon 11 off.png icon 11 on.png

.. o

icon 12 off.png icon 12 on.png icon 13 off.png icon 13 on.png icon 14 off.png icon 14 on.png

Fa el el M
L™ d L™ Jd L™ d |

icon 15 off.png icon 15 on.png icon 16 off.png icon 16 on.png icon 17 off.png icon 17 on.png

Appendix e Operator panel characters

Operator panel characters

| 0/2/3/4 56 7 ABCDE|F
o [V [efallF] "] |5 S
REN = PE 5
2| P b £

3 [A i o

7\4'41_!. '-' "- -.‘:" a- X
EE I; I--W e

L

l

M} ﬂl L.,ixl_i= ke T
R TR R
[LB 22
L [E R mEE R
EESiEIEI il |

m MmO 0O W| > | O | | N o o~ w N

To enter character code, press Alt, type decimal character code preceded by 0, then release Alt.
Numeric keypad should be used, Num Lock should be on.

Example:

According to table, symbol ° (degrees centigrade) hexadecimal code is DF, which is 223 decimal.
To enter the symbol:

make sure num lock is on

press Alt

press consecutively 0223
release Alt

Because of the character set, monitor displays "R" character, but the LCD will show correcily.

dprns(1,0,0, 'T=xx.xBC");
dprnr(1,2,0,4,1,cybro_temperature*0.1);

/=2l]zl [[[[][]
HNNEENNNNNENEEEN

Codes 0..7 are reserved for bar-graph and national characters.

69

Appendix e Keyboard shortcuts

Keyboard shortcuts
General

F1
F2
F4
Shift-F4

F5
F6
F7
F8

F9
Ctrl-F9
F10

F11

F12
Ctrl-F12

Ctrl-O
Ctrl-S

Ctrl-Shift-S
Ctrl-D
Ctrl-L

Ins
Delete
Ctrl-Up
Ctrl-Dn

Ctrl-Tab
Ctrl-Shift-Tab
Ctrl-F4

Alt-F4

Text editor

Ctrl-space

Ctrl-Z Alt-Backspace
Shift-Ctrl-Z

Ctrl-X Shift-Del
Ctrl-C Ctrl-Insert
Ctrl-v Shift-Insert
Ctrl-A

Ctrl-F
F3

Ctrl-R
Ctrl-G

Ctrl-Shift-1
Ctrl-Shift-U
Ctrl-Shift-C

Help

Syntax check
Program settings
Environment settings

Hardware setup
Allocation editor
Mask editor
Socket editor

Send program to controller

Send without initializing variables
Open online monitor

Start PLC program

Stop PLC program

Pause PLC program

Open project
Save project

Save As
Connect/disconnect communication
Select NAD

Context sensitive insert
Context sensitive delete
Move item up

Move item down

Next window
Previous window
Close window
Exit program

Insert variable or function

Undo
Redo

Cut
Copy
Paste
Select all

Find

Find next
Replace
Go to line

Indent selection

Unindent selection
Comment/uncomment selection

70

	Index
	Introduction
	Installation
	User interface
	Online monitor
	Identify modules
	Multisend

	Programming
	Hardware
	Expansion modules
	Hardware setup
	Device properties

	Variables
	Naming
	Allocation
	Basic data types
	Other data types
	Retentive variables
	EE variables
	I/O variables
	Timer
	Pulse timer
	On-delay timer
	Visibility

	Refresh processing
	Scan overrun
	Assignment
	Expressions
	Operators
	Expression evaluation
	Type conversion
	Multiline expressions
	Flow control
	Return value

	Operator panel
	General
	Print functions
	Panel buttons
	Panel masks
	Program interface

	Serial interface
	Features
	Free-programmable mode
	Select port
	Create message
	Send message
	Start receiver
	Parse received message

	Free-programmable radio
	Initialize socket
	Send and receive
	Message type
	Group address

	Free-programmable TCP/IP
	Initialize socket
	UDP mode
	TCP master
	TCP slave

	Free-programmable SMS
	Initialize driver
	Send and receive
	Message format

	Networking
	Ethernet setup
	Connection options
	LAN connection
	USB or serial connection
	Direct connection (no router)
	Internet connection

	Socket interface
	1. Periodic 1s
	2. Periodic 10s
	3. On-request
	4. On-change
	On-request example
	On-change example

	Features
	Real-time clock
	NAD alias
	Password protection
	Modbus slave
	Mobile application
	Binary object
	Integer object
	Tabs and order
	Spacer
	Actions
	Internet
	Examples

	Command line options

	Getting started
	Step 1: hardware
	Step 2: variables
	Step 3: write code
	Step 4: run

	Appendix
	Data type summary
	Elementary
	Input/Output
	Timer
	Constants

	Structured text summary
	Operators
	Flow control
	Edge detect
	Type conversion
	Serial ports
	Display functions
	Network functions
	Return value

	Program examples
	Library
	Template
	Hardware demo
	Demo program

	Function library
	Instruction list summary
	Mobile app tags
	Binary object
	Integer object
	Pages and order

	Mobile app icons
	Operator panel characters
	Keyboard shortcuts
	General
	Text editor

